1
|
Wang J, Zhang J, Guo K, Yue Q, Li Y, Xu X, Gao Y, Gao B. Selective elimination of organic pollutants and analysis of effects and novel mechanisms of aged microplastics on wavelength-dependent UV-LED/H 2O 2 system. WATER RESEARCH 2024; 267:122526. [PMID: 39342709 DOI: 10.1016/j.watres.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The selective removal of organic pollutants and potential impact of aged microplastics (MPs) as emerging pollutants in wavelength-dependent UV-LED/H2O2 system are not fully understood. This study found that cefalexin (CFX) degradation efficiency in UV-LED alone system was highly correlated with its UV molar absorbance (R2=0.994), while in UV-LED/H2O2 system, it was correlated with ·OH yield (R2=0.991) across various wavelengths. Quantitative structure-activity relationship (QSAR) analysis showed selective degradation of six pollutants based on their e--donating capabilities (R2=0.748-0.916). The coexistence of aged MPs, introducing C-O/C=O groups and rearranging their surface e-, potentially affected the elimination efficiency of CFX. Aged polystyrene (PS) decreased the degradation efficiency of CFX by shorting the O-O bond length (lO-O) in H2O2 and capturing e- from H2O2, whereas aged polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) had negligible effects as the lO-O elongation balanced the e--donating effect of H2O2. Additionally, phenol released from aged PS, with strong nucleophilicity, competing with CFX for ·OH, further decreasing CFX degradation efficiency. This study provides valuable insights into organic pollutant selective removal and reveals a novel inhibitory mechanism of aged PS on the performance of UV-LED/H2O2 technology.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jijie Zhang
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Kangying Guo
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Qinyan Yue
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xing Xu
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yue Gao
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Baoyu Gao
- Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Tao Q, Ma P, Chen B, Qu X, Fu H. Hierarchically spherical assembly of carbon nanorods derived from metal-organic framework as solid-phase microextraction coating for nitrated polycyclic aromatic hydrocarbon analysis. J Chromatogr A 2024; 1736:465352. [PMID: 39255650 DOI: 10.1016/j.chroma.2024.465352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are pervasive contaminants in aquatic environments. They are characterized by persistence, toxicity, bioaccumulation, and long-range transport, significantly threatening human health. The development of sensitive methods for nitro-PAH analysis in environmental samples is in great need. This study developed a novel carbonaceous SPME coating derived from metal-organic framework (MOF), namely a spherical assembly consisting of carbon nanorods with hierarchical porosity (HP-MOF-C), for the extraction and determination of nitro-PAHs in waters. The HP-MOF-C coated fiber demonstrated superior nitro-PAH extraction efficiencies, with enrichment factors 2∼70 times higher than commercial fibers. This enhancement was due to the strong hydrophobic, π-π electron coupling/stacking, and π-π electron donor-acceptor interactions between the carbonaceous framework of HP-MOF-C and the nitro-PAHs. Moreover, the unique hierarchical porous structure of HP-MOF-C accelerated the diffusion of nitro-PAHs, further facilitating their enrichment. The fiber also exhibited good thermal stability, remarkable chemical stabilities against common acid, base, and polar/non-polar solvents, and long service life (> 150 SPME cycles). The nitro-PAH determination method based on HP-MOF-C coating yielded wide linear ranges, low detection limits (0.4∼5.0 ng L-1), satisfactory repeatability and reproducibility, and good recoveries in real water samples. The proposed method was considered to be green according to the Analytical GREEnness assessment. The present study not only offers an efficient SPME coating for the enrichment of nitro-PAHs, but also provides insights into the design of porous coating materials.
Collapse
Affiliation(s)
- Qingwen Tao
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China.
| |
Collapse
|
3
|
Zhu Y, Li J, Zhang Y, Ji X, Chen J, Huang D, Li J, Li M, Chen C, Zhao J. Distinct Photochemistry of Odd-Carbon PAHs from the Even-Carbon Ones During the Photoaging and Analysis of Soot. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11578-11586. [PMID: 38899536 DOI: 10.1021/acs.est.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the primary organic carbons in soot. In addition to PAHs with even carbon numbers (PAHeven), substantial odd-carbon PAHs (PAHodd) have been widely observed in soot and ambient particles. Analyzing and understanding the photoaging of these compounds are essential for assessing their environmental effects. Here, using laser desorption ionization mass spectrometry (LDI-MS), we reveal the substantially different photoreactivity of PAHodd from PAHeven in the aging process and their MS detection through their distinct behaviors in the presence and absence of elemental carbon (EC) in soot. During direct photooxidation of organic carbon (OC) alone, the PAHeven are oxidized more rapidly than the PAHodd. However, the degradation of PAHodd becomes preponderant over PAHeven in the presence of EC during photoaging of the whole soot. All of these observations are proposed to originate from the more rapid hydrogen abstraction reaction from PAHodd in the EC-photosensitized reaction, owing to its unique structure of a single sp3-hybridized carbon site. Our findings reveal the photoreactivity and reaction mechanism of PAHodd for the first time, providing a comprehensive understanding of the oxidation of PAHs at a molecular level during soot aging and highlight the enhanced effect of EC on PAHodd ionization in LDI-MS analysis.
Collapse
Affiliation(s)
- Yifan Zhu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiachun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojie Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianhua Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Di Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meng Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
- Currently at Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
St Mary L, Trine LSD, Roper C, Wiley J, Craciunescu L, Sotorrios L, Paterson M, Massey Simonich SL, McCoustra M, Henry TB. Environmental significance of PAH photoproduct formation: TiO 2 nanoparticle influence, altered bioavailability, and potential photochemical mechanisms. CHEMOSPHERE 2024; 360:142384. [PMID: 38797205 PMCID: PMC11321274 DOI: 10.1016/j.chemosphere.2024.142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO2-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO2-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed. Chemical analyses identified diverse photoproducts, but all PAHs shared a primary photoproduct, 9,10-phenanthraquinone (9,10-PQ), regardless of TiO2-NP presence. The computed reaction mechanisms revealed the roles photodissociation and singlet oxygen chemistry likely play in PAH mediated photochemical processes that result in the congruent production of 9,10-PQ within this study. Our investigation of PAH photoproduct formation has provided substantial evidence of the many, diverse and congruent, photoproducts formed from physicochemically distinct PAHs and how TiO2-NPs influence bioavailability and time-related formation of PAH photoproducts.
Collapse
Affiliation(s)
- Lindsey St Mary
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK; Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA.
| | - Lisandra S D Trine
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA
| | - Courtney Roper
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA; Department of Biomolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Jackson Wiley
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA
| | - Luca Craciunescu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Lia Sotorrios
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Martin Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA
| | - Martin McCoustra
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Theodore B Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| |
Collapse
|
5
|
Hao W, Liang B, Chen J, Chen Y, Wang Z, Zhao X, Peng C, Tian M, Yang F. Secondary formation of oxygenated and nitrated polycyclic aromatic compounds under stagnant weather conditions: Drivers and seasonal variation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172487. [PMID: 38631623 DOI: 10.1016/j.scitotenv.2024.172487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Severe air pollution tends to occur under stagnant weather conditions. This study focused on the occurrence and formation of PM2.5-bound polycyclic aromatic compounds (PACs) under stagnant weather conditions, in consideration of their adverse human health effect and ecological toxicity. The concentrations of PACs were higher under stagnant weather conditions than in other situations with averaged values of 46.0 ng/m3 versus 12.3-39.9 ng/m3 for total PACs. Secondary formation contributed to over half of the oxygenated and nitrated polycyclic aromatic compounds (OPAHs and NPAHs). Further analyses revealed different formation mechanisms for secondary OPAHs and NPAHs. Secondary production of OPAHs was sensitive to the variations of both temperature (T) and O3 concentration at T < 22 °C but sustained at a high level despite the fluctuation of temperature and O3 concentration at T > 22 °C. Elevated NO2 concentrations favored the formation of inorganic nitrogen-containing products over NPAHs under lower temperature and higher humidity. Stagnant weather events, accompanied by raised PAC levels occurred in all seasons, but their effects on secondary processes differed among seasons. The elevated temperature, lowered humidity, and increased NO2 level facilitated the secondary formation of OPAHs and/or NPAHs during the stagnant weather events in spring and summer. While under the temperature and humidity conditions in autumn and winter, increased NO2 levels during stagnant weather events promoted the production of secondary inorganic nitrogen-containing compounds over organic products. This study raised concern about the toxic organic pollutants in the atmosphere under stagnant weather conditions and revealed different formation mechanisms between secondary oxygenated and nitrated pollutants as well as among different seasons.
Collapse
Affiliation(s)
- Weiwei Hao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bo Liang
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Jing Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ziqian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xinquan Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chao Peng
- Chongqing Academy of Eco-Environmental Science, Chongqing 401147, China
| | - Mi Tian
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Fumo Yang
- National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Hao W, Gao B, Liang B, Chen J, Dong L, Wang Z, Tian M. Distinct seasonal variability of source-dependent health risks from PM 2.5-bound PAHs and related derivatives in a megacity, southwest China: Implications for the significance of secondary formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163742. [PMID: 37116800 DOI: 10.1016/j.scitotenv.2023.163742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
In contrast to polycyclic aromatic hydrocarbons (PAHs) which have been regularly monitored, the source-dependent health risk of their derivatives in ambient environment has not been well understood, especially regarding seasonal variability. In this study, oxygenated and nitrated PAHs (OPAHs and NPAHs) in PM2.5 samples from different seasons in urban Chongqing were analyzed and compared with PAHs from a human health perspective. Benzo[a]pyrene equivalent concentrations (BaPeq) were annually averaged at 6.13 ± 8.97 ng/m3 (n = 118) in the present study, with highest levels in winter followed by spring, autumn, and summer. The BaPeq values of OPAHs were higher than PAHs in spring and summer with seasonal averaged value up to 3.7 times of that for PAHs, manifesting significant underestimation of the health impact if only PAHs were considered. Incremental lifetime cancer risk (ILCR) model results suggested that the potential cancer risks were accumulated mostly from inhalation exposure during infancy and adulthood. Furthermore, in comparison with PAHs, OPAHs, mainly 6H-Benzo[c,d]pyren-6-one, had significant contribution to cancer risks (annually averaged at 58.3 %). Source-dependent cancer risks based on positive matrix factorization model denoted secondary formed PAH derivatives as a critical contributor to cancer risk, particularly in spring and summer (attributed to about 61 % of ILCR). The enhanced secondary formation of PAH derivatives during spring and summer was partially justified by diagnostic ratios and further analysis revealed that higher temperature, higher O3 level, and lower relative humidity besides stronger solar intensity during these two seasons as the most likely causes of this seasonal variation. Results in this study emphasizes that more knowledge on the formation and toxicity of OPAHs is imperative, especially in the context of complex PM2.5-ozone pollution in China.
Collapse
Affiliation(s)
- Weiwei Hao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bo Gao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Bo Liang
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Jing Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lingchi Dong
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ziqian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mi Tian
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Su Y, Ren Q, Zhang WY, Chen F. Computational Studies on the Reactivity of Polycyclic Aromatic Hydrocarbons. Chemphyschem 2023; 24:e202200638. [PMID: 36409286 DOI: 10.1002/cphc.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment as toxic pollutants. In this study, quantum chemistry methods are used to study reactions of PAHs in both particle and gas phases. Seven theoretical methods are exploited to predict the reactive sites of 15 PAHs in the particle phase. Among these methods, the performance of the condensed Fukui function (CFF) is optimum. The gas-phase reactions of eight PAHs are also investigated. Except for fluorene, CFF predicts correctly the gas-phase mono-nitro products for seven systems. The products of fluorene predicted by CFF are 1-nitrofluorene and 3-nitrofluorene, which is however inconsistent with the experimental results. Transition state theory is then used to investigate the reaction mechanism of fluorene. Calculated rate constants for 3-nitrofluorene and 2-nitrofluorene formation are much bigger than that for 1-nitrofluorene formation, which is in agreement with the experimental results.
Collapse
Affiliation(s)
- Yingwei Su
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing, 100083, China
| | - Qing Ren
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing, 100083, China
| | - Wen-Yan Zhang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing, 100083, China
| | - Feiwu Chen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing, 100083, China
| |
Collapse
|
8
|
Xu Y, Wang H, Chang X, Fuentes A, Demarco R, Chen D. Optical Properties of Polycyclic Aromatic Hydrocarbon Clusters with Oxygenated Substitutions: A Theoretical Analysis. J Phys Chem A 2022; 126:5776-5783. [PMID: 35984739 DOI: 10.1021/acs.jpca.2c02907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The introduction of functional groups at high coverage levels can have significant impacts on the band structures of polycyclic aromatic hydrocarbon (PAH) clusters. The HOMO-LUMO gaps are highly sensitive to the type and distribution of functional groups. An in-house method is proposed to build PAH (naphthalene, pyrene, coronene, and ovalene) clusters with surface functionalization of -OH, -COOH and -CHO groups using the DFT method. The -CHO groups are found to reduce the gap value the most, but exceptions exist due to the spatial distribution of functional groups. Considering the impact of -CHO groups only, we can approximate that the impact of functional groups lies in the range of 0.14-0.89 eV. Applying further analysis on the possible energy number of energy transitions of substituted PAH clusters, it is shown that PAH clusters with oxygenated functions still behave like an indirect band gap material. The coupling effect of PAH stacking and PAH size is also addressed. A simple expression is proposed to estimate the bandgap of a mixed system using the HOMO and LUMO energy of the two components. Further attempts are made to interpret recent experiments from the impact of PAH stacking, PAH size, and functional groups.
Collapse
Affiliation(s)
- Yabei Xu
- State Key Lab of Explosion Science and Technology, Beijing Institute of Technology, No. 5 Zhong Guan Cun Nan Da Street, Beijing 100081, China
| | - Hongyu Wang
- State Key Lab of Explosion Science and Technology, Beijing Institute of Technology, No. 5 Zhong Guan Cun Nan Da Street, Beijing 100081, China
| | - Xiaoya Chang
- State Key Lab of Explosion Science and Technology, Beijing Institute of Technology, No. 5 Zhong Guan Cun Nan Da Street, Beijing 100081, China
| | - Andres Fuentes
- Departamento de Industrias, Universidad Técnica Federico Santa María, Avenada España 1680, Casilla 110-V, 2340000 Valparaíso, Chile
| | - Rodrigo Demarco
- Departamento de Industrias, Universidad Técnica Federico Santa María, Avenada España 1680, Casilla 110-V, 2340000 Valparaíso, Chile
| | - Dongping Chen
- State Key Lab of Explosion Science and Technology, Beijing Institute of Technology, No. 5 Zhong Guan Cun Nan Da Street, Beijing 100081, China
| |
Collapse
|
9
|
Chen L, Pan M, Lu P, Hu D. Combined Experimental and Computational Study on the Transformation of a Novel 1,3,4-Oxadiazole Thioether Nematicide in Aqueous Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8963-8973. [PMID: 35848219 DOI: 10.1021/acs.jafc.2c02649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been demonstrated that Exianliuyimi (EXLYM) exhibits good nematocidal activity. As a potential nematicide, EXLYM and its transformation products (TPs) may generate emerging pollutants with hazardous effects on the ecosystem. In this study, the fate of EXLYM in aqueous solutions was investigated using experimental and theoretical approaches. Laboratory-scale experiments showed that EXLYM is hydrolytically stable. Microbial processes are primarily responsible for the oxidation of sulfur in aqueous solutions. Under simulated sunlight, the t1/2 values of EXLYM in acidic, neutral, and alkaline buffer solutions were 5.02, 3.83, and 5.55 h, respectively. Six TPs were identified using a non-target screening strategy realized by ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap high-resolution mass spectrometry and 18O-labeling experiments. Four of these were unambiguously confirmed using authentic standards. Reactive oxygen species scavenging experiments, 18O-labeling experiments, and quantum-theoretical calculations suggested that EXLYM could degrade mainly through four pathways: sulfur oxidation, nucleophilic aromatic photosubstitution, C-S bond cleavage, and oxidative ring-opening. The proposed degradation kinetics, TPs, and transformation pathways in aqueous solutions provide valuable information on the fate of EXLYM in aquatic ecosystems and lay the foundation for further toxicological tests.
Collapse
Affiliation(s)
- Lingzhu Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Mengyuan Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
10
|
Chen X, Li HR, Feng X, Wang HT, Sun XH. Prediction of •OH-Initiated and •NO 3-Initiated Transformation Products of Polycyclic Aromatic Hydrocarbons by Electronic Structure Approaches. ACS OMEGA 2022; 7:24942-24950. [PMID: 35910152 PMCID: PMC9330183 DOI: 10.1021/acsomega.1c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The abiotic reaction products of polycyclic aromatic hydrocarbons (PAHs) with hydroxyl radicals (•OH) and nitrate radicals (•NO3) are nitro-, oxygen-, and hydroxyl-containing PAHs (NPAHs, OPAHs, and OHPAHs). Four methods of the highest occupied molecular orbital (HOMO), Fukui function (FF), dual descriptor (DD), and population of π electrons (PP-π) are selected to predict the chemical reactivity of PAHs attacked by •OH and •NO3 in this study. The predicted •OH-initiated and •NO3-initiated transformation products are compared with the main PAH transformation products (PAH-TPs) observed in the laboratory. The results indicate that PP-π and DD approaches fail to predict the transformation products of fused PAHs containing five-membered rings. By predicting the PAH-TPs of 13-14 out of the 15 parent PAHs accurately, HOMO and FF methods were shown to be suitable for predicting the transformation products formed from the abiotic reactions of fused PAHs with •OH and •NO3.
Collapse
|
11
|
Fessner ND, Grimm C, Kroutil W, Glieder A. Late-Stage Functionalisation of Polycyclic ( N-Hetero-) Aromatic Hydrocarbons by Detoxifying CYP5035S7 Monooxygenase of the White-Rot Fungus Polyporus arcularius. Biomolecules 2021; 11:1708. [PMID: 34827706 PMCID: PMC8615681 DOI: 10.3390/biom11111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/04/2022] Open
Abstract
Functionalisation of polycyclic aromatic hydrocarbons (PAHs) and their N-heteroarene analogues (NPAHs) is a tedious synthetic endeavour that requires diverse bottom-up approaches. Cytochrome P450 enzymes of white-rot fungi were shown to participate in the fungal detoxification of xenobiotics and environmental hazards via hydroxylation of PAH compounds. In this paper, the recently discovered activity of the monooxygenase CYP5035S7 towards (N)PAHs was investigated in detail, and products formed from the substrates azulene, acenaphthene, fluorene, anthracene, and phenanthrene by whole-cell biocatalysis were isolated and characterised. The observed regioselectivity of CYP5035S7 could be explained by a combination of the substrate's electron density and steric factors influencing the substrate orientation giving insight into the active-site geometry of the enzyme.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| |
Collapse
|
12
|
Titaley IA, Simonich SLM, Larsson M. Recent Advances in the Study of the Remediation of Polycyclic Aromatic Compound (PAC)-Contaminated Soils: Transformation Products, Toxicity, and Bioavailability Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:873-882. [PMID: 35634165 PMCID: PMC9139952 DOI: 10.1021/acs.estlett.0c00677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic compounds (PACs) encompass a diverse group of compounds, often found in historically contaminated sites. Different experimental techniques have been used to remediate PACs-contaminated soils. This brief review surveyed over 270 studies concerning remediation of PACs-contaminated soils and found that, while these studies often measured the concentration of 16 parent polycyclic aromatic hydrocarbons (PAHs) pre- and post-remediation, only a fraction of the studies included the measurement of PAC-transformation products (PAC-TPs) and other PACs (n = 33). Only a few studies also incorporated genotoxicity/toxicity/mutagenicity analysis pre- and post-remediation (n = 5). Another aspect that these studies often neglected to include was bioavailability, as none of the studies that included measurement of PAH-TPs and PACs included bioavailability investigation. Based on the literature analysis, future remediation studies need to consider chemical analysis of PAH-TPs and PACs, genotoxicity/toxicity/mutagenicity, and bioavailability analyses pre- and post-remediation. These assessments will help address numerous concerns including, among others, the presence, properties, and toxicity of PACs and PAH-TPs, risk assessment of soil post-remediation, and the bioavailability of PAH-TPs. Other supplementary techniques that help assist these analyses and recommendations for future analyses are also discussed.
Collapse
Affiliation(s)
- Ivan A. Titaley
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author: Phone: +1 541 737 9208, Fax: +1 541 737 0497
| | - Staci L. Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
13
|
Chen XM, Chu YJ, Liu CG. Degradation Mechanism of Benzo[ a]pyrene Initiated by the OH Radical and 1O 2: An Insight from Density Functional Theory Calculations. ACS OMEGA 2020; 5:25552-25560. [PMID: 33073081 PMCID: PMC7557245 DOI: 10.1021/acsomega.0c01448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The degradation mechanism of benzo[a]pyrene (BaP) initiated by •OH and 1O2 in aqueous solution is investigated by density functional theory calculations. The main degradation products are BaP-1,6-quinone, BaP-3,6-quinone, BaP-4,6-quinone, and BaP-6,12-quinone. •OH and HO2 are the main intermediate radical species. At a low initial concentration of •OH, 1O2 could be a primary driver for BaP degradation. The degradation mechanism includes six consecutive elementary reactions: (1) 1O2 initiation forming BaP-6-OO. (2) 1,3 H-shift (H atom shifts to the OO group) that is promoted by H2O, forming BaP-6-OOH. (3) BaP-6-OOH decomposes into the •OH radical and BaP-6-O. (4) •OH addition to BaP-6-O forming BaP-6-O-1(3,4,12)-OH. (5) Extracting the H atom from the carbon with the OH group by 1O2. (6) Extracting the H atom from the OH group by HO2. At a high initial concentration of •OH, the •OH-initiated and 1O2-initiated degradation reactions of BaP are both feasible. The degradation mechanism includes six consecutive elementary reactions: (1) •OH initiation forming BaP-6-OH or 1O2 initiation forming BaP-6-OO. (2) 1O2 addition to BaP-6-OH forming BaP-6-OH-12(1,3,4)-OO or •OH addition to BaP-6-OO forming BaP-6-OO-12(1,3,4)-OH. (3) Extracting the H atom from the carbon with the OH group by 1O2, forming HO2. (4) 1,3 H-shift (H-shift from the carbon to the OO group), promoted by H2O. (5) The loss of the OH radical. (6) Abstracting the H atom from the OH group by HO2. In this paper, the formation of BaP-4,6-quinone via the BaP degradation is first reported. Water participates in the elementary reaction in which the H atom attached on the aromatic ring shifts to the OO group, serving as a bridge that stabilizes the transition state and transports the proton. A comprehensive investigation explains the degradation mechanism of BaP initiated by •OH and 1O2 in aqueous solution.
Collapse
Affiliation(s)
- Xue-Mei Chen
- College
of Chemical Engineering, Northeast Electric
Power University, Jilin
City 132012, China
| | - Yun-Jie Chu
- College
of Chemical Engineering, Northeast Electric
Power University, Jilin
City 132012, China
| | - Chun-Guang Liu
- Department
of Chemistry, Faculty of Science, Beihua
University, Jilin
City 132013, China
| |
Collapse
|
14
|
Titaley IA, Eriksson U, Larsson M. Rapid extraction method of polycyclic aromatic compounds in soil using basic silica selective pressurized liquid extraction. J Chromatogr A 2020; 1618:460896. [DOI: 10.1016/j.chroma.2020.460896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
|