1
|
Geng R, Qiang S, Mei H, Zhang B, Li P, Liang J, Fan Q. Sequestration process and mechanism of U(VI) on montmorillonite-aspergillus niger composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177952. [PMID: 39657335 DOI: 10.1016/j.scitotenv.2024.177952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The existence state and spatiotemporal evolution process of uranium in mineral-microbe complex systems are important factors that constrain its ecotoxicity. This study investigated the sequestration of U(VI) by montmorillonite-Aspergillus niger (MTA) composite using bioassay and spectroscopies approaches. The results demonstrate that the sequestration process and mechanism of U(VI) on MTA differ substantially from those of individual components. Under neutral conditions, the sorption of U(VI) decreased from 92.4 ± 4.6 % on MT to 73.2 ± 2.4 % on MTA4 and 74.9 ± 6.3 % on MTA10, respectively, while the stability of U(VI) species on MTA increased obviously compared to MT. In the case of MTA formed over 4 days (MTA4), the biosorption effect of A. niger hyphae dominated the sequestration of U(VI). In contrast, for MTA formed over 10 days (MTA10), the interactions between MT and A. niger became more pronounced, and the hyphae of Aspergillus niger played a pivotal role in U(VI) sequestration, immobilizing U(VI) through complexation with organic ligands and bioreduction reactions. The high expandability of MT facilitated the penetration of extracellular polymeric substances (EPS) from A. niger into its interlayer of MT, enhancing U(VI) complexation and reduction. These processes significantly contributed to the effective sequestration of U(VI) by the MTA composite.
Collapse
Affiliation(s)
- Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China
| | - Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiyang Mei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Beihang Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Petroleum Resources Exploration and Evaluation, Gansu Province, Lanzhou 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730046, China.
| |
Collapse
|
2
|
Kang M, Kang Y, Wu H, Qin D, Dai C, Wang J. The redox reactions of U(VI)/UO 2 on Tamusu claystone: Effects of Fe 2+/Fe 3+ and organic matters. CHEMOSPHERE 2024; 348:140754. [PMID: 37995974 DOI: 10.1016/j.chemosphere.2023.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The claystone-based Tamusu area in the Bayingebi Basin, Inner Mongolia, is preselected as a China's high-level radioactive waste (HLRW) repository site. This study investigated the redox reactions of U(VI)/UO2 on Tamusu claystone. Five Tamusu claystone samples collected from boreholes Tzk1 and Tzk2 at different depths were used for batch experiments at pH ∼5.0, ∼7.0, and ∼9.0. These claystones contain considerable amounts of organic matters and Fe2+-containing minerals such as pyrite, fluorannite, and ankerite. Results showed that aqueous U(VI) could be partially reduced to U(IV) and/or U(V)-containing precipitates (U3O8, U4O9, etc.) by these Tamusu claystones, and the reaction is more favorable under acidic condition. We proposed that leaching of the structural Fe2+ followed by surface adsorption and interface reaction, is the primary mechanism responsible for U(VI) reduction. Under alkaline condition, organic matters might dominate the partial reduction of aqueous U(VI). Besides, the phosphorus-containing spots on Tamusu claystone surfaces are the reactive sites for U aggregation, implying the possible formation of U(VI)- and/or U(IV)-phosphate minerals. It is important to note that, due to the presence of minor Fe3+ in Tamusu claystones, the high-purity UO2 could undergo partial oxidation to U4O9 and/or U3O8. Therefore, insoluble UO2+x (0 < x ≤ 0.67) is proposed to be the most thermodynamically stable form in Tamusu claystone. This study enhances our comprehension of the essential geochemical processes of uranium in claystone surroundings, but also offers crucial information for the safety evaluation of China's HLRW repository.
Collapse
Affiliation(s)
- Mingliang Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Yixiao Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Danwen Qin
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Chaocheng Dai
- College of Earth Sciences, East China University of Technology, Nanchang, 330013, China
| | - Ju Wang
- Beijing Research Institute of Uranium Geology, Beijing, 100029, China
| |
Collapse
|
3
|
Yang B, Rashid S, Graham N, Li G, Yu W. In-depth study of the removal of Mn(II) by Fe(VI) treatment and the profound influence of NOM on floc formation and properties. WATER RESEARCH 2023; 247:120840. [PMID: 37950954 DOI: 10.1016/j.watres.2023.120840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The presence of manganese(II) in drinking water sources poses a significant treatment difficulty for water utilities, thus necessitating the development of effective removal strategies. Treatment by Fe(VI), a combined oxidant and coagulant, has been identified as a potential green solution; however, its effectiveness is hampered by natural organic matter (NOM), and this underlying mechanism is not fully understood. Here, we investigated the inhibitory effect of three different types of NOM, representing terrestrial, aquatic, and microbial origins, on Mn(II) removal and floc growth during Fe(VI) coagulation. Results revealed that Fe(VI) coagulation effectively removes Mn(II), but NOM could inhibit its effectiveness by competing in oxidation reactions, forming NOM-Fe complexes, and altering floc aggregation. Humic acid was found to exhibit the strongest inhibition due to its unsaturated heterocyclic species that strongly bond to flocs and react with Fe(VI). For the first time, this study has presented a comprehensive elucidation of the atomic-level structure of Fe(VI) hydrolysis products by employing Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). Results demonstrated that NOM strengthened single-corner and double-corner coordination between FeO6 octahedrons that were consumed by Mn(II), resulting in an increased contribution of γ-FeOOH in the core-shell structure (γ-FeOOH shell and γ-F2O3 core), thereby inhibiting coagulation effects. Furthermore, NOM impeded the formation of stable manganite, resulting in more low-valence Mn(III) being incorporated in the form of an unstable intermediate. These findings provide a deeper understanding of the complex interplay between Fe coagulants, heavy metal pollution, and NOM in water treatment and offer insight into the limitations of Fe(VI) in practical applications.
Collapse
Affiliation(s)
- Bingqian Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Sajid Rashid
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Tawachkultanadilok P, Osakoo N, Keawkumay C, Deekamwong K, Sosa N, Rojviriya C, Nijpanich S, Chanlek N, Prayoonpokarach S, Wittayakun J. Synthesis and Characterization of Zeolite NaY Dispersed on Bamboo Wood. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4946. [PMID: 37512220 PMCID: PMC10381651 DOI: 10.3390/ma16144946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Zeolites in powder form have the potential to agglomerate, lowering access to active sites. Furthermore, a suspension of fine zeolite powder in liquid media is difficult to separate. Such drawbacks could be improved by dispersing zeolite crystals on support materials. This work demonstrates the dispersion of zeolite NaY crystals on bamboo wood by mixing the wood with zeolite gel before hydrothermal treatment. The syntheses were performed with acid-refluxed and non-refluxed wood. The phase of zeolites, particle distribution and morphology, zeolite content in the wood, and zeolite-wood interaction were investigated using X-ray diffraction, X-ray tomography, scanning electron microscopy, thermogravimetric analysis, nitrogen sorption analysis, and X-ray photoelectron spectroscopy. Higher zeolite content and better particle dispersion were obtained in the synthesis with the acid-refluxed wood. The composite of NaY on the acid-refluxed wood was demonstrated to be an effective adsorbent for Ni(II) ions in aqueous solutions, providing a higher adsorbed amount of Ni(II) per weight of NaY.
Collapse
Affiliation(s)
- Pimrapus Tawachkultanadilok
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattawut Osakoo
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chalermpan Keawkumay
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Krittanun Deekamwong
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Narongrit Sosa
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Narong Chanlek
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Sanchai Prayoonpokarach
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Portman TA, Granath A, Mann MA, El Hayek E, Herzer K, Cerrato JM, Rudgers JA. Characterization of root-associated fungi and reduced plant growth in soils from a New Mexico uranium mine. Mycologia 2023; 115:165-177. [PMID: 36857605 PMCID: PMC10089371 DOI: 10.1080/00275514.2022.2156746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Characterizing the diverse, root-associated fungi in mine wastes can accelerate the development of bioremediation strategies to stabilize heavy metals. Ascomycota fungi are well known for their mutualistic associations with plant roots and, separately, for roles in the accumulation of toxic compounds from the environment, such as heavy metals. We sampled soils and cultured root-associated fungi from blue grama grass (Bouteloua gracilis) collected from lands with a history of uranium (U) mining and contrasted against communities in nearby, off-mine sites. Plant root-associated fungal communities from mine sites were lower in taxonomic richness and diversity than root fungi from paired, off-mine sites. We assessed potential functional consequences of unique mine-associated soil microbial communities using plant bioassays, which revealed that plants grown in mine soils in the greenhouse had significantly lower germination, survival, and less total biomass than plants grown in off-mine soils but did not alter allocation patterns to roots versus shoots. We identified candidate culturable root-associated Ascomycota taxa for bioremediation and increased understanding of the biological impacts of heavy metals on microbial communities and plant growth.
Collapse
Affiliation(s)
- Taylor A Portman
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Abigail Granath
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Michael A Mann
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131
| | - Kelsie Herzer
- Department of Civil, Construction, and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - José M Cerrato
- Department of Civil, Construction, and Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
6
|
He Z, Dong L, Zhu P, Zhang Z, Xu T, Zhang D, Pan X. Nano-scale analysis of uranium release behavior from river sediment in the Ili basin. WATER RESEARCH 2022; 227:119321. [PMID: 36368086 DOI: 10.1016/j.watres.2022.119321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Due to the limitations of the conventional water sample pretreatment methods, some of the colloidal uranium (U) has long been misidentified as "dissolved" phase. In this work, the U species in river water in the Ili Basin was classified into submicron-colloidal (0.1-1 μm), nano-colloidal (0.1 μm-3 kDa) and dissolved phases (< 3 kDa) by using high-speed centrifugation and ultrafiltration. The U concentration in the river water was 5.39-8.75 μg/L, which was dominated by nano-colloidal phase (55-70%). The nano-colloidal particles were mainly composed of particulate organic matter (POM) and had a very high adsorption capacity for U (accounting for 70 ± 23% of colloidal U). Sediment disturbance, low temperature, and high inorganic carbon greatly improved the release of nano-colloidal U, but high levels of Ca2+ inhibited it. The simulated river experiments indicated that the flow regime determined the release of nano-colloidal U, and large amounts of nano-colloidal U might be released during spring floods in the Ili basin. Moreover, global warming increases river flow and inorganic carbon content, which may greatly promote the release and migration of nano-colloidal U.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhibing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Tao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
7
|
Geng R, Yuan L, Shi L, Qiang S, Li Y, Liang J, Li P, Zheng G, Fan Q. New insights into the sorption of U(VI) on kaolinite and illite in the presence of Aspergillus niger. CHEMOSPHERE 2022; 288:132497. [PMID: 34626657 DOI: 10.1016/j.chemosphere.2021.132497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The regulation effect of Aspergillus niger to the sorption behavior of U(VI) on kaolinite and illite was studied through investigating the enrichment of U(VI) on kaolinite-Aspergillus niger and illite-Aspergillus niger composites. Kaolinite- or illite-A. niger composites were prepared through co-culturation method. Results showed that U(VI) sorption on kaolinite and illite in different pH ranges could be attributed to ion exchange, outer-sphere complexes (OSCs), and inner-sphere complexes (ISCs), while only the ISCs on the bio-composites. Moreover, micro-spectroscopy tests revealed that U(VI) coordinate with phosphate, amide, and carboxyl groups on illite- and kaolinite- A. niger composites. X-ray photoelectron spectroscopy (XPS) further found that U(VI) was partly reduced to non-crystalline U(IV) by A. niger in the bio-composites, occurring as phosphate coordination polymers or biomass-associated monomers. The findings herein provide further insight into the immobilization and migration of uranium in environments.
Collapse
Affiliation(s)
- Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longmiao Yuan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leiping Shi
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shirong Qiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuqiang Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Guodong Zheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Velasco CA, Brearley AJ, Gonzalez-Estrella J, Ali AMS, Meza MI, Cabaniss SE, Thomson BM, Forbes TZ, Lezama Pacheco JS, Cerrato JM. From Adsorption to Precipitation of U(VI): What is the Role of pH and Natural Organic Matter? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16246-16256. [PMID: 34797046 PMCID: PMC8680647 DOI: 10.1021/acs.est.1c05429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.
Collapse
Affiliation(s)
- Carmen A Velasco
- Department of Civil, Construction and Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Adrian J Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - María Isabel Meza
- Department of Civil, Construction and Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stephen E Cabaniss
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bruce M Thomson
- Department of Civil, Construction and Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Juan S Lezama Pacheco
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - José M Cerrato
- Department of Civil, Construction and Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
9
|
El Hayek E, Medina S, Guo J, Noureddine A, Zychowski KE, Hunter R, Velasco CA, Wiesse M, Maestas-Olguin A, Brinker CJ, Brearley A, Spilde M, Howard T, Lauer FT, Herbert G, Ali AM, Burchiel S, Campen MJ, Cerrato JM. Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9949-9957. [PMID: 34235927 PMCID: PMC8413144 DOI: 10.1021/acs.est.1c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 μM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 μm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 μm) at 100 μM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico 87701, United States
| | - Jimin Guo
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Internal Medicine, Molecular Medicine, MSC08 4720, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Katherine E Zychowski
- Department of Biobehavioral Health and Data Sciences, MSC09 5350, University of New Mexico College of Nursing, Albuquerque, New Mexico 87106, United States
| | - Russell Hunter
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Carmen A Velasco
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Chemical Engineering Faculty, Central University of Ecuador, Ciudad Universitaria, Ritter s/n & Bolivia, P.O. Box 17-01-3972, Quito 170129, Ecuador
| | - Marco Wiesse
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Angelea Maestas-Olguin
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tamara Howard
- Department of Cell Biology and Physiology, MSC08 4750, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Guy Herbert
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Abdul Mehdi Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Scott Burchiel
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - José M Cerrato
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
10
|
Wilson A, Velasco CA, Herbert GW, Lucas SN, Sanchez BN, Cerrato JM, Spilde M, Li QZ, Campen MJ, Zychowski KE. Mine-site derived particulate matter exposure exacerbates neurological and pulmonary inflammatory outcomes in an autoimmune mouse model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:503-517. [PMID: 33682625 PMCID: PMC8052313 DOI: 10.1080/15287394.2021.1891488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Southwestern United States has a legacy of industrial mining due to the presence of rich mineral ore deposits. The relationship between environmental inhaled particulate matter (PM) exposures and neurological outcomes within an autoimmune context is understudied. The aim of this study was to compare two regionally-relevant dusts from high-priority abandoned mine-sites, Claim 28 PM, from Blue Gap Tachee, AZ and St. Anthony mine PM, from the Pueblo of Laguna, NM and to expose autoimmune-prone mice (NZBWF1/J). Mice were randomly assigned to one of three groups (n = 8/group): DM (dispersion media, control), Claim 28 PM, or St. Anthony PM, subjected to oropharyngeal aspiration of (100 µg/50 µl), once per week for a total of 4 consecutive doses. A battery of immunological and neurological endpoints was assessed at 24 weeks of age including: bronchoalveolar lavage cell counts, lung gene expression, brain immunohistochemistry, behavioral tasks and serum autoimmune biomarkers. Bronchoalveolar lavage results demonstrated a significant increase in number of polymorphonuclear neutrophils following Claim 28 and St. Anthony mine PM aspiration. Lung mRNA expression showed significant upregulation in CCL-2 and IL-1ß following St. Anthony mine PM aspiration. In addition, neuroinflammation was present in both Claim 28 and St. Anthony mine-site derived PM exposure groups. Behavioral tasks resulted in significant deficits as determined by Y-maze new arm frequency following Claim 28 aspiration. Neutrophil elastase was significantly upregulated in the St. Anthony mine exposure group. Interestingly, there were no significant changes in serum autoantigens suggesting systemic inflammatory effects may be mediated through other molecular mechanisms following low-dose PM exposures.
Collapse
Affiliation(s)
- Alexis Wilson
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Carmen A. Velasco
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131
- Department of Chemical Engineering, Universidad Central del Ecuador, Ritter s/n & Bolivia, Quito 17-01-3972, Ecuador
| | - Guy W. Herbert
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Selita N. Lucas
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Bethany N. Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - José M. Cerrato
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Michael Spilde
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131
| | - Quan-Zhen Li
- Department of Immunology and Microarray Core, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
11
|
Liu Y, Zhang Q, Wu B, Li X, Ma F, Li F, Gu Q. Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121165. [PMID: 31522067 DOI: 10.1016/j.jhazmat.2019.121165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
As a recalcitrant fraction of petroleum, heavy hydrocarbons (including aromatics, resins, and asphaltenes) can remain in contaminated soils even after decades of weathering, thereby causing serious harm to the soil ecosystem and human health. Pyrolysis is a promising technique for remediating petroleum-contaminated soil. However, this technique still presents some drawbacks, such as high energy consumption and damage to soil properties. Therefore, an innovative method using hematite (Fe2O3) for the catalytic pyrolysis of weathered petroleum-contaminated soil was developed in this study. Compared with soil pyrolyzed without Fe2O3 at 400 °C for 30 min, the residual concentrations of aromatics, resins, and asphaltenes in soil pyrolyzed with 5.0% Fe2O3 were reduced by 67.8%, 52.3%, and 67.9%, respectively. After pyrolysis with 5.0% Fe2O3, the water-holding capacity of soil was considerably increased and the soil became darker and rougher. Scanning electron microscopy analysis showed that many small holes occurred on the surface of the pyrolytic soil. X-ray photoelectron spectrometer analysis showed that a thin layer of graphitic C was formed and deposited on the surface of the pyrolytic soil. We also observed that the wheat germination percentage and biomass yield in the soil pyrolyzed with 5.0% Fe2O3 were even higher than those in clean soil.
Collapse
Affiliation(s)
- Yuqin Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Hayek EE, Brearley AJ, Howard T, Hudson P, Torres C, Spilde MN, Cabaniss S, Ali AMS, Cerrato JM. Calcium in Carbonate Water Facilitates the Transport of U(VI) in Brassica juncea Roots and Enables Root-to-Shoot Translocation. ACS EARTH & SPACE CHEMISTRY 2019; 3:2190-2196. [PMID: 31742240 PMCID: PMC6859903 DOI: 10.1021/acsearthspacechem.9b00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The role of calcium (Ca) on the cellular distribution of U(VI) in Brassica juncea roots and root-to-shoot translocation was investigated using hydroponic experiments, microscopy, and spectroscopy. Uranium accumulated mainly in the roots (727-9376 mg kg-1) after 30 days of exposure to 80 μM dissolved U in water containing 1 mM HCO3 - at different Ca concentrations (0-6 mM) at pH 7.5. However, the concentration of U in the shoots increased 22 times in experiments with 6 mM Ca compared to 0 mM Ca. In the Ca control experiment, transmission electron microscopy-energy-dispersive spectroscopy analyses detected U-P-bearing precipitates in the cortical apoplast of parenchyma cells. In experiments with 0.3 mM Ca, U-P-bearing precipitates were detected in the cortical apoplast and the bordered pits of xylem cells. In experiments with 6 mM Ca, U-P-bearing precipitates aggregated in the xylem with no apoplastic precipitation. These results indicate that Ca in carbonate water inhibits the transport and precipitation of U in the root cortical apoplast and facilitates the symplastic transport and translocation toward shoots. These findings reveal the considerable role of Ca in the presence of carbonate in facilitating the transport of U in plants and present new insights for future assessment and phytoremediation strategies.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, Albuquerque, New Mexico 87131, United States
| | - Adrian J. Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, United States
| | - Tamara Howard
- Department of Cell Biology and Physiology, University of New Mexico, MSC08 4750, Albuquerque, New Mexico 87131, United States
| | - Patrick Hudson
- Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, New Mexico 87131, United States
| | - Chris Torres
- Department of Chemical and Biological Engineering, University of New Mexico, MSC01 1120, Albuquerque, New Mexico 87131, United States
| | - Michael N. Spilde
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, United States
| | - Stephen Cabaniss
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, Albuquerque, New Mexico 87131, United States
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131, United States
| | - José M. Cerrato
- Department of Civil Engineering, University of New Mexico, MSC01 1070, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
Avasarala S, Torres C, Ali AMS, Thomson BM, Spilde MN, Peterson EJ, Artyushkova K, Dobrica E, Lezama-Pacheco JS, Cerrato JM. Effect of Bicarbonate and Oxidizing Conditions on U(IV) and U(VI) Reactivity in Mineralized Deposits of New Mexico. CHEMICAL GEOLOGY 2019; 524:345-355. [PMID: 31406388 PMCID: PMC6690612 DOI: 10.1016/j.chemgeo.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We investigated the effect of bicarbonate and oxidizing agents on uranium (U) reactivity and subsequent dissolution of U(IV) and U(VI) mineral phases in the mineralized deposits from Jackpile mine, Laguna Pueblo, New Mexico, by integrating laboratory experiments with spectroscopy, microscopy and diffraction techniques. Uranium concentration in solid samples from mineralized deposit obtained for this study exceeded 7000 mg kg-1, as determined by X-ray fluorescence (XRF). Results from X-ray photoelectron spectroscopy (XPS) suggest the coexistence of U(VI) and U(IV) at a ratio of 19:1 at the near surface region of unreacted solid samples. Analyses made using X-ray diffraction (XRD) and electron microprobe detected the presence of coffinite (USiO4) and uranium-phosphorous-potassium (U-P-K) mineral phases. Imaging, mapping and spectroscopy results from scanning transmission electron microscopy (STEM) indicate that the U-P-K phases were encapsulated by carbon. Despite exposing the solid samples to strong oxidizing conditions, the highest aqueous U concentrations were measured from samples reacted with 100% air saturated 10 mM NaHCO3 solution, at pH 7.5. Analyses using X-ray absorption spectroscopy (XAS) indicate that all the U(IV) in these solid samples were oxidized to U(VI) after reaction with dissolved oxygen and hypochlorite (OCl-) in the presence of bicarbonate (HCO3 -). The reaction between these organic rich deposits, and 100% air saturated bicarbonate solution (containing dissolved oxygen), can result in considerable mobilization of U in water, which has relevance to the U concentrations observed at the Rio Paguate across the Jackpile mine. Results from this investigation provide insights on the reactivity of carbon encapsulated U-phases under mild and strong oxidizing conditions that have important implication in U recovery, remediation and risk exposure assessment of sites.
Collapse
Affiliation(s)
- Sumant Avasarala
- Department of Civil, Construction, & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Chris Torres
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Bruce M. Thomson
- Department of Civil, Construction, & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Michael N. Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Eric J. Peterson
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Elena Dobrica
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | - José M. Cerrato
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|