1
|
Seo H, Cho B, Joo S, Ahn IY, Kim T. Archival records of the Antarctic clam shells from Marian Cove, King George Island suggest a protective mechanism against ocean acidification. MARINE POLLUTION BULLETIN 2024; 200:116052. [PMID: 38290361 DOI: 10.1016/j.marpolbul.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
Continuous emissions of anthropogenic CO2 are changing the atmospheric and oceanic environment. Although some species may have compensatory mechanisms to acclimatize or adapt to the changing environment, most marine organisms are negatively influenced by climate change. In this study, we aimed to understand the compensatory mechanisms of the Antarctic clam, Laternula elliptica, to climate-related stressors by using archived shells from 1995 to 2018. Principal component analysis revealed that seawater pCO2 and salinity in the Antarctic Ocean, which have increased since the 2000's, are the most influential factors on the characteristics of the shell. The periostracum thickness ratio and nitrogen on the outermost surface have increased, and the dissolution area (%) has decreased. Furthermore, the calcium content and mechanical properties of the shells have not changed. The results suggest that L. elliptica retains the mechanism of protecting the shell from high pCO2 by thickening the periostracum as a phenotype plasticity.
Collapse
Affiliation(s)
- Hyein Seo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Boongho Cho
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Soobin Joo
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - In-Young Ahn
- Korea Polar Research Institute, 26 songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Taewon Kim
- Program in Biomedical Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Guo X, Huang M, Luo X, You W, Ke C. Impact of ocean acidification on shells of the abalone species Haliotis diversicolor and Haliotis discus hannai. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106183. [PMID: 37820478 DOI: 10.1016/j.marenvres.2023.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Ocean acidification (OA) results from the absorption of anthropogenic CO2 emissions by the ocean and threatens the survival of many marine calcareous organisms including molluscs. We studied OA effects on adult shells of the abalone species Haliotis diversicolor and Haliotis discus hannai that were exposed to three pCO2 conditions (ambient, ∼880, and ∼1600 μatm) for 1 year. Shell periostracum corrosion under OA was observed for both species. OA reduced shell hardness and altered the nacre ultrastructure in H. diversicolor, making its shells more vulnerable to crushing force. OA exposure did not reduce the shell hardness of H. discus hannai and did not alter nacre ultrastructure. However, the reduced calcification also decreased its resistance to crushing force. Sr/Ca in the shell increased with rising calcification rate. Mg/Ca increased upon OA exposure could be due to a complimentary mechanism of preventing shell hardness further reduced. The Na/Ca distribution between the aragonite and calcite of abalone shells was also changed by OA. In general, both abalone species are at a greater risk in a more acidified ocean. Their shells may not provide sufficient protection from predators or to transportation stress in aquaculture.
Collapse
Affiliation(s)
- Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, PR China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Miaoqin Huang
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Weiwei You
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Caihuan Ke
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
3
|
Zhao L, Harvey BP, Higuchi T, Agostini S, Tanaka K, Murakami-Sugihara N, Morgan H, Baker P, Hall-Spencer JM, Shirai K. Ocean acidification stunts molluscan growth at CO 2 seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162293. [PMID: 36813205 DOI: 10.1016/j.scitotenv.2023.162293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification can severely affect bivalve molluscs, especially their shell calcification. Assessing the fate of this vulnerable group in a rapidly acidifying ocean is therefore a pressing challenge. Volcanic CO2 seeps are natural analogues of future ocean conditions that offer unique insights into the scope of marine bivalves to cope with acidification. Here, we used a 2-month reciprocal transplantation of the coastal mussel Septifer bilocularis collected from reference and elevated pCO2 habitats to explore how they calcify and grow at CO2 seeps on the Pacific coast of Japan. We found significant decreases in condition index (an indication of tissue energy reserves) and shell growth of mussels living under elevated pCO2 conditions. These negative responses in their physiological performance under acidified conditions were closely associated with changes in their food sources (shown by changes to the soft tissue δ13C and δ15N ratios) and changes in their calcifying fluid carbonate chemistry (based on shell carbonate isotopic and elemental signatures). The reduced shell growth rate during the transplantation experiment was further supported by shell δ13C records along their incremental growth layers, as well as their smaller shell size despite being of comparable ontogenetic ages (5-7 years old, based on shell δ18O records). Taken together, these findings demonstrate how ocean acidification at CO2 seeps affects mussel growth and reveal that lowered shell growth helps them survive stressful conditions.
Collapse
Affiliation(s)
- Liqiang Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan.
| | - Tomihiko Higuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kentaro Tanaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | | | - Holly Morgan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Phoebe Baker
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
4
|
Chandra Rajan K, Li Y, Dang X, Lim YK, Suzuki M, Lee SW, Vengatesen T. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification. Proc Biol Sci 2023; 290:20221216. [PMID: 36651043 PMCID: PMC9979777 DOI: 10.1098/rspb.2022.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Biomineralization is one of the key biochemical processes in calcifying bivalve species such as oysters that is affected by ocean acidification (OA). Larval life stages of oysters are made of aragonite crystals whereas the adults are made of calcite and/or aragonite. Though both calcite and aragonite are crystal polymorphs of calcium carbonate, they have different mechanical properties and hence it is important to study the micro and nano structure of different life stages of oyster shells under OA to understand the mechanisms by which OA affects biomineralization ontogeny. Here, we have studied the larval and juvenile life stages of an economically and ecologically important estuarine oyster species, Crassostrea hongkongensis, under OA with focus over shell fabrication under OA (pHNBS 7.4). We also look at the effect of parental exposure to OA on larvae and juvenile microstructure. The micro and nanostructure characterization reveals directional fabrication of oyster shells, with more organized structure as biomineralization progresses. Under OA, both the larval and juvenile stages show directional dissolution, i.e. the earlier formed shell layers undergo dissolution at first, owing to longer exposure time. Despite dissolution, the micro and nanostructure of the shell remains unaffected under OA, irrespective of parental exposure history.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yang Li
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Xin Dang
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yong Kian Lim
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
- Centre for Aquaculture and Veterinary Science & School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Seung Woo Lee
- Korea Institute of Geoscience and Mineral Resources, Daejeon, Republic of South Korea
| | - Thiyagarajan Vengatesen
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
5
|
Leung JYS, Zhang S, Connell SD. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107407. [PMID: 35934837 DOI: 10.1002/smll.202107407] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sam Zhang
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
6
|
Telesca L, Peck LS, Backeljau T, Heinig MF, Harper EM. A century of coping with environmental and ecological changes via compensatory biomineralization in mussels. GLOBAL CHANGE BIOLOGY 2021; 27:624-639. [PMID: 33112464 PMCID: PMC7839727 DOI: 10.1111/gcb.15417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Accurate biological models are critical to predict biotic responses to climate change and human-caused disturbances. Current understanding of organismal responses to change stems from studies over relatively short timescales. However, most projections lack long-term observations incorporating the potential for transgenerational phenotypic plasticity and genetic adaption, the keys to resistance. Here, we describe unexpected temporal compensatory responses in biomineralization as a mechanism for resistance to altered environmental conditions and predation impacts in a calcifying foundation species. We evaluated exceptional archival specimens of the blue mussel Mytilus edulis collected regularly between 1904 and 2016 along 15 km of Belgian coastline, along with records of key environmental descriptors and predators. Contrary to global-scale predictions, shell production increased over the last century, highlighting a protective capacity of mussels for qualitative and quantitative trade-offs in biomineralization as compensatory responses to altered environments. We also demonstrated the role of changes in predator communities in stimulating unanticipated biological trends that run contrary to experimental predictive models under future climate scenarios. Analysis of archival records has a key role for anticipating emergent impacts of climate change.
Collapse
Affiliation(s)
- Luca Telesca
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- British Antarctic SurveyCambridgeUK
| | | | - Thierry Backeljau
- Royal Belgian Institute of Natural SciencesBrusselsBelgium
- Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
| | - Mario F. Heinig
- Technical University of DenmarkDTU NanolabNational Centre for Nano Fabrication and CharacterizationKongens LyngbyDenmark
| | | |
Collapse
|
7
|
Bullard EM, Torres I, Ren T, Graeve OA, Roy K. Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean. Proc Natl Acad Sci U S A 2021; 118:e2004769118. [PMID: 33431664 PMCID: PMC7826377 DOI: 10.1073/pnas.2004769118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anthropogenic warming and ocean acidification are predicted to negatively affect marine calcifiers. While negative effects of these stressors on physiology and shell calcification have been documented in many species, their effects on shell mineralogical composition remains poorly known, especially over longer time periods. Here, we quantify changes in the shell mineralogy of a foundation species, Mytilus californianus, under 60 y of ocean warming and acidification. Using historical data as a baseline and a resampling of present-day populations, we document a substantial increase in shell calcite and decrease in aragonite. These results indicate that ocean pH and saturation state, not temperature or salinity, play a strong role in mediating the shell mineralogy of this species and reveal long-term changes in this trait under ocean acidification.
Collapse
Affiliation(s)
- Elizabeth M Bullard
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093-0116;
| | - Ivan Torres
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Tianqi Ren
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Olivia A Graeve
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
8
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
9
|
Harayashiki CAY, Márquez F, Cariou E, Castro ÍB. Mollusk shell alterations resulting from coastal contamination and other environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114881. [PMID: 32505962 DOI: 10.1016/j.envpol.2020.114881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Effects of contamination on aquatic organisms have been investigated and employed as biomarkers in environmental quality assessment for years. A commonly referenced aquatic organism, mollusks represent a group of major interest in toxicological studies. Both gastropods and bivalves have external mineral shells that protects their soft tissue from predation and desiccation. These structures are composed of an organic matrix and an inorganic matrix, both of which are affected by environmental changes, including exposure to hazardous chemicals. This literature review evaluates studies that propose mollusk shell alterations as biomarkers of aquatic system quality. The studies included herein show that changes to natural variables such as salinity, temperature, food availability, hydrodynamics, desiccation, predatory pressure, and substrate type may influence the form, structure, and composition of mollusk shells. However, in the spatial and temporal studies performed in coastal waters around the world, shells of organisms sampled from multi-impacted areas were found to differ in the form and composition of both organic and inorganic matrices relative to shells from less contaminated areas. Though these findings are useful, the toxicological studies were often performed in the field and were not able to attribute shell alterations to a specific molecule. It is known that the organic matrix of shells regulates the biomineralization process; proteomic analyses of shells may therefore elucidate how different contaminants affect shell biomineralization. Further research using approaches that allow a clearer distinction between shell alterations caused by natural variations and those caused by anthropogenic influence, as well as studies to identify which molecule is responsible for such alterations or to determine the ecological implications of shell alterations, are needed before any responses can be applied universally.
Collapse
Affiliation(s)
- Cyntia Ayumi Yokota Harayashiki
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil.
| | - Federico Márquez
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV, Puerto Madryn, Chubut, Argentina; Facultad de Ciencias Naturales, Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Bvd. Brown 3051, U9120ACV, Puerto Madryn, Chubut, Argentina
| | - Elsa Cariou
- Observatory of Universe Sciences of Nantes-Atlantique, University of Nantes, Campus Lombarderie, 2 Rue de La Houssinière, 44322, Nantes, France
| | - Ítalo Braga Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| |
Collapse
|
10
|
Leung JYS, Chen Y, Nagelkerken I, Zhang S, Xie Z, Connell SD. Calcifiers can Adjust Shell Building at the Nanoscale to Resist Ocean Acidification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003186. [PMID: 32776486 DOI: 10.1002/smll.202003186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification is considered detrimental to marine calcifiers based on laboratory studies showing that increased seawater acidity weakens their ability to build calcareous shells needed for growth and protection. In the natural environment, however, the effects of ocean acidification are subject to ecological and evolutionary processes that may allow calcifiers to buffer or reverse these short-term negative effects through adaptive mechanisms. Using marine snails inhabiting a naturally CO2 -enriched environment over multiple generations, it is discovered herein that they build more durable shells (i.e., mechanically more resilient) by adjusting the building blocks of their shells (i.e., calcium carbonate crystals), such as atomic rearrangement to reduce nanotwin thickness and increased incorporation of organic matter. However, these adaptive adjustments to future levels of ocean acidification (year 2100) are eroded at extreme CO2 concentrations, leading to construction of more fragile shells. The discovery of adaptive mechanisms of shell building at the nanoscale provides a new perspective on why some calcifiers may thrive and others collapse in acidifying oceans, and highlights the inherent adaptability that some species possess in adjusting to human-caused environmental change.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yujie Chen
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
11
|
Abstract
Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
12
|
Leung JYS, Russell BD, Connell SD. Linking energy budget to physiological adaptation: How a calcifying gastropod adjusts or succumbs to ocean acidification and warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136939. [PMID: 32014772 DOI: 10.1016/j.scitotenv.2020.136939] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Accelerating CO2 emissions have driven physico-chemical changes in the world's oceans, such as ocean acidification and warming. How marine organisms adjust or succumb to such environmental changes may be determined by their ability to balance energy intake against expenditure (i.e. energy budget) as energy supports physiological functions, including those with adaptive value. Here, we examined whether energy budget is a driver of physiological adaptability of marine calcifiers to the near-future ocean acidification and warming; i.e. how physiological energetics (respiration rate, feeding rate, energy assimilation and energy budget) relates to adjustments in shell growth and shell properties of a calcifying gastropod (Austrocochlea concamerata). We found that ocean warming boosted the energy budget of gastropods due to increased feeding rate, resulting in faster shell growth and greater shell strength (i.e. more mechanically resilient). When combined with ocean acidification, however, the gastropods had a substantial decrease in energy budget due to reduced feeding rate and energy assimilation, leading to the reduction in shell growth and shell strength. By linking energy budget to the adjustability of shell building, we revealed that energy availability can be critical to determine the physiological adaptability of marine calcifiers to the changing oceanic climate.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China; Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
13
|
Telesca L, Peck LS, Sanders T, Thyrring J, Sejr MK, Harper EM. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. GLOBAL CHANGE BIOLOGY 2019; 25:4179-4193. [PMID: 31432587 DOI: 10.1111/gcb.14758] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large-scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within-region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low-salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic-enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high-latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade-offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.
Collapse
Affiliation(s)
- Luca Telesca
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- British Antarctic Survey, Cambridge, UK
| | | | | | - Jakob Thyrring
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Mikael K Sejr
- Department of Bioscience, Arctic Research Centre, Aarhus University, Aarhus C, Denmark
- Department of Bioscience, Marine Ecology, Aarhus University, Silkeborg, Denmark
| | | |
Collapse
|
14
|
Convey P, Peck LS. Antarctic environmental change and biological responses. SCIENCE ADVANCES 2019; 5:eaaz0888. [PMID: 31807713 PMCID: PMC6881164 DOI: 10.1126/sciadv.aaz0888] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
Antarctica and the surrounding Southern Ocean are facing complex environmental change. Their native biota has adapted to the region's extreme conditions over many millions of years. This unique biota is now challenged by environmental change and the direct impacts of human activity. The terrestrial biota is characterized by considerable physiological and ecological flexibility and is expected to show increases in productivity, population sizes and ranges of individual species, and community complexity. However, the establishment of non-native organisms in both terrestrial and marine ecosystems may present an even greater threat than climate change itself. In the marine environment, much more limited response flexibility means that even small levels of warming are threatening. Changing sea ice has large impacts on ecosystem processes, while ocean acidification and coastal freshening are expected to have major impacts.
Collapse
|
15
|
Cummings VJ, Smith AM, Marriott PM, Peebles BA, Halliday NJ. Effect of reduced pH on physiology and shell integrity of juvenile Haliotis iris (pāua) from New Zealand. PeerJ 2019; 7:e7670. [PMID: 31579589 PMCID: PMC6765356 DOI: 10.7717/peerj.7670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022] Open
Abstract
The New Zealand pāua or black footed abalone, Haliotis iris, is one of many mollusc species at potential risk from ocean acidification and warming. To investigate possible impacts, juvenile pāua (~24 mm shell length) were grown for 4 months in seawater pH/pCO2 conditions projected for 2100. End of century seawater projections (pHT 7.66/pCO2 ~1,000 μatm) were contrasted with local ambient conditions (pHT 8.00/pCO2 ~400 μatm) at two typical temperatures (13 and 15 °C). We used a combination of methods (morphometric, scanning electron microscopy, X-ray diffraction) to investigate effects on juvenile survival and growth, as well as shell mineralogy and integrity. Lowered pH did not affect survival, growth rate or condition, but animals grew significantly faster at the higher temperature. Juvenile pāua were able to biomineralise their inner nacreous aragonite layer and their outer prismatic calcite layer under end-of-century pH conditions, at both temperatures, and carbonate composition was not affected. There was some thickening of the nacre layer in the newly deposited shell with reduced pH and also at the higher temperature. Most obvious was post-depositional alteration of the shell under lowered pH: the prismatic calcite layer was thinner, and there was greater etching of the external shell surface; this dissolution was greater at the higher temperature. These results demonstrate the importance of even a small (2 °C) difference in temperature on growth and shell characteristics, and on modifying the effects at lowered pH. Projected CO2-related changes may affect shell quality of this iconic New Zealand mollusc through etching (dissolution) and thinning, with potential implications for resilience to physical stresses such as predation and wave action.
Collapse
Affiliation(s)
- Vonda J. Cummings
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Abigail M. Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Peter M. Marriott
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Bryce A. Peebles
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - N. Jane Halliday
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|