1
|
Pan T, Zhang Y, Yang F, Liao H, Feng W, Sun F, Jiang W, Wang Q, Ji M, Yang C, Leppäranta M. Characteristics of the presence and migration patterns of DOM between ice and water in the cold and arid Daihai Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170876. [PMID: 38367733 DOI: 10.1016/j.scitotenv.2024.170876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Seasonal ice cover plays a crucial role in shaping the physical characteristics of lakes in cold and arid regions. Moreover, the ice significantly affects the level and quality of dissolved organic matter (DOM) in the water column. We utilized spectroscopy and mass spectrometry to analyze the molecular composition and distribution of DOM in ice cores and under-ice water in Daihai Lake. We identified the main environmental factors affecting DOM migration through structural equation modelling (SEM). The freezing process created a repulsive effect on DOM, with water samples demonstrating a greater DOM content than ice. The dominant part of the DOM in the ice cores was mainly comprised of protein-like materials (71.45 %), whereas water consisted of humus-like materials (54.81 %). The average molecular weight of the ice cover DOM (m/z = 396.77) was smaller than in the under-ice water (m/z = 405.42). While low-molecular and low-aromatic protein-like material tended to be trapped in the ice layer during ice formation, large-molecular and highly aromatic humic substances were more easily expelled into the water. Interestingly, condensed aromatic hydrocarbons were found to occur less frequently in the ice phase (11 %) compared to the aqueous phase (13 %). Both the lipid and protein/aliphatic compound structures exhibited slightly higher ratios in the ice (6 % and 8 %, respectively) than in water (1 % and 5 %, respectively). SEM between the ice cover environment and DOM indicated that the ice can influence the distribution pattern of DOM through the regulation of internal solute factors and other chemicals. The nature of the DOM and the rate of ice growth also play critical roles in determining the distribution mechanism of DOM for ice and water. The pollutant distribution characteristics and migration patterns between ice and water are essential for comprehending environmental water pollution and promoting pollution management and protection measures in cold region lakes.
Collapse
Affiliation(s)
- Ting Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yimeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shandong Huankeyuan Environmental Engineering Co., Ltd, Jinan 250000, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weilong Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qianqian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Meichen Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglei Yang
- Shandong Huankeyuan Environmental Engineering Co., Ltd, Jinan 250000, China
| | - Matti Leppäranta
- Institute for Atmospheric and Earth System Research, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Cai YH, Gopalakrishnan A, Dong Q, Schäfer AI. Removal of strontium by nanofiltration: Role of complexation and speciation of strontium with organic matter. WATER RESEARCH 2024; 253:121241. [PMID: 38377922 DOI: 10.1016/j.watres.2024.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Strontium (Sr) removal from water is required because excessive naturally occurring Sr exposure is hazardous to human health. Climate and seasonal changes cause water quality variations, in particular quality and quantity of organic matter (OM) and pH, and such variations affect Sr removal by nanofiltration (NF). The mechanisms for such variations are not clear and thus OM complexation and speciation require attention. Sr removal by NF was investigated with emphasis on the role of OM (type and concentration) and pH (2-12) on possible removal mechanisms, specifically size and/or charge exclusion as well as solute-solute interactions. The filtration results show that the addition of various OM (10 types) and an increase of OM concentration (2-100 mgC.L-1) increased Sr removal by 10-15%. The Sr-OM interaction was enhanced with increasing OM concentration, implying enhanced size exclusion via Sr-OM interaction as the main mechanism. Such interactions were quantified by asymmetric flow field-flow fractionation (FFFF) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). Both extremely low and high pH increased Sr removal due to the enhanced charge exclusion and Sr-OM interactions. This work elucidated and verified the mechanism of OM and pH on Sr removal by NF membranes.
Collapse
Affiliation(s)
- Yang-Hui Cai
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Qilin Dong
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
3
|
Gopalakrishnan A, Bouby M, Schäfer AI. Membrane-organic solute interactions in asymmetric flow field flow fractionation: Interplay of hydrodynamic and electrostatic forces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158891. [PMID: 36411600 DOI: 10.1016/j.scitotenv.2022.158891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The structure and size characterization of organic matter (OM) using flow field-flow fractionation (FFFF) is interesting due to the numerous interactions of OM in aquatic systems and water treatment processes. The estimation of hydrodynamic and electrostatic forces involved in the fractionation of OM over different molecular weight cut-off (MWCO) membranes is vital for a better understanding of the FFFF process. This work aims to understand the membrane-OM interactive forces with respect to membrane MWCO, solute molecular weight, flow rates, solution pH and ionic strength. Polystyrene sulfonate sodium salt (PSS) of molecular weights 10, 30 and 65 kDa were used as model organic solutes for fractionation over ultrafiltration (UF) membranes of MWCO 1-30 kDa. Maximum fractionation of PSS was achieved by using a tight membrane of 1 kDa MWCO at the conditions of high permeate flow rate (1.5-2.0 mL·min-1), low concentrate flow rate (0.2-0.3 mL·min-1) and low ionic strength (10 mM). The better fractionation corresponds to high permeate drag force and low concentrate drag force. A low membrane-solute DLVO interaction is favourable for the retention of a small solute. This study illustrated that FFFF characteristics can be analyzed based on membrane-solute interactive forces controlled by selected flow, size and charge parameters.
Collapse
Affiliation(s)
- Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Muriel Bouby
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
He Z, Dong L, Zhu P, Zhang Z, Xu T, Zhang D, Pan X. Nano-scale analysis of uranium release behavior from river sediment in the Ili basin. WATER RESEARCH 2022; 227:119321. [PMID: 36368086 DOI: 10.1016/j.watres.2022.119321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Due to the limitations of the conventional water sample pretreatment methods, some of the colloidal uranium (U) has long been misidentified as "dissolved" phase. In this work, the U species in river water in the Ili Basin was classified into submicron-colloidal (0.1-1 μm), nano-colloidal (0.1 μm-3 kDa) and dissolved phases (< 3 kDa) by using high-speed centrifugation and ultrafiltration. The U concentration in the river water was 5.39-8.75 μg/L, which was dominated by nano-colloidal phase (55-70%). The nano-colloidal particles were mainly composed of particulate organic matter (POM) and had a very high adsorption capacity for U (accounting for 70 ± 23% of colloidal U). Sediment disturbance, low temperature, and high inorganic carbon greatly improved the release of nano-colloidal U, but high levels of Ca2+ inhibited it. The simulated river experiments indicated that the flow regime determined the release of nano-colloidal U, and large amounts of nano-colloidal U might be released during spring floods in the Ili basin. Moreover, global warming increases river flow and inorganic carbon content, which may greatly promote the release and migration of nano-colloidal U.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhibing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Tao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
5
|
Worms IAM, Kavanagh K, Moulin E, Regier N, Slaveykova VI. Asymmetrical Flow Field-Flow Fractionation Methods for Quantitative Determination and Size Characterization of Thiols and for Mercury Size Speciation Analysis in Organic Matter-Rich Natural Waters. Front Chem 2022; 10:800696. [PMID: 35252112 PMCID: PMC8888841 DOI: 10.3389/fchem.2022.800696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetrical flow field-flow fractionation (AF4) efficiently separates various macromolecules and nano-components of natural waters according to their hydrodynamic sizes. The online coupling of AF4 with fluorescence (Fluo) and UV absorbance (UV) detectors (FluoD and UVD, respectively) and inductively coupled plasma–mass spectrometry (ICP-MS) provides multidimensional information. This makes it a powerful tool to characterize and quantify the size distributions of organic and inorganic nano-sized components and their interaction with trace metals. In this study, we developed a method combining thiol labeling by monobromo(trimethylammonio)bimane bromide (qBBr) with AF4–FluoD to determine the size distribution and the quantities of thiols in the macromolecular dissolved organic matter (DOM) present in highly colored DOM-rich water sampled from Shuya River and Lake Onego, Russia. We found that the qBBr-labeled components of DOM (qB-DOM) were of humic type, characterized by a low hydrodynamic size (dh < 2 nm), and have concentrations <0.3 μM. After enrichment with mercury, the complexes formed between the nano-sized components and Hg were analyzed using AF4–ICP-MS. The elution profile of Hg followed the distribution of the UV-absorbing components of DOM, characterized by slightly higher sizes than qB-DOM. Only a small proportion of Hg was associated with the larger-sized components containing Fe and Mn, probably inorganic oxides that were identified in most of the samples from river to lake. The size distribution of the Hg–DOM complexes was enlarged when the concentration of added Hg increased (from 10 to 100 nM). This was explained by the presence of small iron oxides, overlapping the size distribution of Hg–DOM, on which Hg bound to a small proportion. In addition, to provide information on the dispersion of macromolecular thiols in colored DOM-rich natural water, our study also illustrated the potential of AF4–FluoD–UVD–ICP-MS to trace or quantify dynamic changes while Hg binds to the natural nano-colloidal components of surface water.
Collapse
|
6
|
Marle P, Timoner P, Liu W, Castella E, Slaveykova VI. Light-trapped caddisflies to decipher the role of species traits and habitats in Hg accumulation and transfer. CHEMOSPHERE 2022; 287:131909. [PMID: 34461331 DOI: 10.1016/j.chemosphere.2021.131909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
We present a novel meta-community approach to explore the influence of species traits, such as adult body size, larval feeding type and microhabitat, as well as larval macrohabitat (main river channel vs. floodplain water bodies) on the concentration of total Hg accumulated ([THg]) in assemblages of adult caddisflies. We analyzed [THg] in 157 light-trapped adult caddisflies in a floodplain sector of the French upper Rhône River and used a linear mixed effect model to decipher the role of species traits and habitats in Hg accumulation. Variation of [THg] between species was best explained by the larval feeding type, whereas the contributions of adult size and larval micro and macro-habitat were minor. Results showed that [THg] in species associated with floodplain macrohabitats in the larval stage was lower than in those associated with the main river channel. This difference could depend on complexation of Hg by DOM (in the floodplain) and MES (in the main channel). This research provides a first evidence of the potential of an entire caddisfly assemblage for the assessment of contamination in large alluvial rivers. The implications of the results are discussed in view of the possible role of caddisflies as vectors of Hg to riparian predators.
Collapse
Affiliation(s)
- Pierre Marle
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Laboratory of Aquatic Ecology and Biology, And Institute for Environmental Sciences, Uni Carl Vogt, 66 Bvd Carl-Vogt CH 1211, Geneva, Switzerland; University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, And Institute for Environmental Sciences, Uni Carl Vogt, 66 Bvd Carl-Vogt CH 1211, Geneva, Switzerland.
| | - Pablo Timoner
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, EnviroSPACE Laboratory, And Institute for Environmental Sciences, Uni Carl Vogt, 66 Bvd Carl-Vogt CH 1211, Geneva, Switzerland
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, And Institute for Environmental Sciences, Uni Carl Vogt, 66 Bvd Carl-Vogt CH 1211, Geneva, Switzerland
| | - Emmanuel Castella
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Laboratory of Aquatic Ecology and Biology, And Institute for Environmental Sciences, Uni Carl Vogt, 66 Bvd Carl-Vogt CH 1211, Geneva, Switzerland
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, And Institute for Environmental Sciences, Uni Carl Vogt, 66 Bvd Carl-Vogt CH 1211, Geneva, Switzerland
| |
Collapse
|
7
|
Jia L, Wu W, Zhang J, Wu H. Insight into heavy metals (Cr and Pb) complexation by dissolved organic matters from biochar: Impact of zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148469. [PMID: 34328995 DOI: 10.1016/j.scitotenv.2021.148469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, batch experiments were conducted to investigate the immobilization of HMs (Cr and Pb) by DOM derived from biochar in the presence and absence of zero-valent iron (Fe) in nitrate and HMs co-contaminated groundwater. Both Cr and Pb were removed effectively in biochar-Fe aqueous systems, while only Pb could be mitigated in biochar systems. Excitation-emission spectrophotometry combined with parallel factor analysis (EEM-PARAFAC) revealed that DOM released from biochar mainly contained human-like and tryptophan-like substances. Moreover, the fluorescence of hemic-like components could be quenched differently by the complexation of HMs, which proved the different removal efficiencies of Cr and Pb in biochar aqueous phase. In biochar-Fe aqueous systems, Fe-C micro-electrolysis was formed in prior to the complexation of DOM-Fe hydroxides. Thus, the chemical reduction was the primary way to removal HMs in batch-Fe systems, which was corresponding with the less variation of DOM components when adding Cr and Pb into aqueous systems. Besides, the observed DOM components with higher aromaticity and humification after adding Cr and Pb, further indicated the complexation of DOM-HMs through the analysis of adsorption and fluorescence indices. These results will provide new insights into the HMs retention on biochar, particularly for the role of Fe on the complexation process.
Collapse
Affiliation(s)
- Lixia Jia
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
8
|
Xu W, Gao Q, He C, Shi Q, Hou ZQ, Zhao HZ. Using ESI FT-ICR MS to Characterize Dissolved Organic Matter in Salt Lakes with Different Salinity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12929-12937. [PMID: 33040523 DOI: 10.1021/acs.est.0c01681] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) composition in salt lakes is critical for water quality and aquatic ecology, and the salinization of salt lakes affects the DOM composition. To the best of our knowledge, no study has explored the effects of salinity on salt lake DOM composition at the molecular level. In this work, we selected Qinghai Lake (QHL) and Daihai Lake (DHL) as typical saline lakes. The two lakes have similar geographical and climatic conditions, and the salinity of QHL is higher than that of DHL. Fourier transform ion cyclotron resonance mass spectrometry coupled with electrospray ionization was applied to compare the DOM molecular composition in the two lakes. At higher salinity, the DOM showed larger average molecular weight, higher oxidation degree, and lower aromaticity. Moreover, the proportion of DOM that is vulnerable to microbial degradation (e.g., lipids), photo-degradation (e.g., aromatic structures), or both processes (e.g., carbohydrates and unsaturated hydrocarbons) reduced at higher salinity. On the contrary, compounds that are refractory to microbial degradation (e.g., lignins/CRAM-like structures and tannins) or photo-degradation (e.g., aliphatic compounds) accumulated. Our study provides a useful and unique method to study DOM molecular composition in salt lakes with different salinity and is helpful to understand DOM transformation during the salinization of salt lakes.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qiang Gao
- State Key Lab Plateau Ecology and Agriculture, Qinghai University, Xining 810016, People's Republic of China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing 102249, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing 102249, People's Republic of China
| | - Zheng-Qing Hou
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266555, People's Republic of China
| | - Hua-Zhang Zhao
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|