1
|
Chen A, Wang C, Cheng Z, Kennes C, Qiu S, Chen J. Enhancing bacterial biodegradation of n-hexane by utilizing the adsorption capacity of non-degrading fungi. CHEMOSPHERE 2024; 363:142900. [PMID: 39029712 DOI: 10.1016/j.chemosphere.2024.142900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Biodegradation of hydrophobic volatile organic compounds (VOCs) such as n-hexane is limited by their poor accessibility. Constructing fungal-bacterial degradation alliances is an effective approach, but the role of those fungi without the capability to degrade VOCs may have been overlooked. In this study, a non-n-hexane-degrading fungus, Fusarium keratoplasticum FK, was utilized to enhance n-hexane degradation by the bacterium Mycobacterium neworleansense WCJ. It was shown that strain WCJ removed 64.84% of n-hexane (at a concentration of 648.20 mg L-1) over 3 d, and 84.04% after introducing strain FK. Microbial growth kinetic studies revealed that the growth of strain WCJ was also promoted. Through a stepwise adsorption-degradation experiment combined with qPCR technology, it was found that the strain WCJ could utilize the n-hexane pre-adsorbed by strain FK, with an increase in copy number from 108.2662 to 108.7731. Therefore, the non-degrading fungi can improved the accessibility of n-hexane by providing n-hexane adsorbed by the mycelium to the degrading bacteria. In addition, the adsorption tests and characterization of the fungal samples before and after Soxhlet extraction indicated that the adsorption of n-hexane on strain FK conformed to Lagergren's pseudo-second-order kinetics and Freundlich adsorption isotherms, and was correlated with the presence of lipids and nonpolar groups. This study emphasizes the potential role of non-degrading fungi in bioremediation and proposes a viable strategy to enhance the bacterial degradation of hydrophobic VOCs.
Collapse
Affiliation(s)
- Aobo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenjie Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, A Coruña, Spain
| | - Songkai Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Haina-Water Engineering Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314000, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
3
|
Richter F, Calonne-Salmon M, van der Heijden MGA, Declerck S, Stanley CE. AMF-SporeChip provides new insights into arbuscular mycorrhizal fungal asymbiotic hyphal growth dynamics at the cellular level. LAB ON A CHIP 2024; 24:1930-1946. [PMID: 38416560 PMCID: PMC10964749 DOI: 10.1039/d3lc00859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (i.e., physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the AMF-SporeChip - to visualise the foraging behaviour of germinating Rhizophagus and Gigaspora spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The AMF-SporeChip allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the AMF-SporeChip is expected to open many future frontiers for AMF research.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Marcel G A van der Heijden
- Agroecology and Environment Research Division, Agroscope, 8046 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Périat C, Kuhn T, Buffi M, Corona-Ramirez A, Fatton M, Cailleau G, Chain PS, Stanley CE, Wick LY, Bindschedler S, Gonzalez D, Li Richter XY, Junier P. Host and nonhost bacteria support bacteriophage dissemination along mycelia and abiotic dispersal networks. MICROLIFE 2024; 5:uqae004. [PMID: 38463165 PMCID: PMC10924533 DOI: 10.1093/femsml/uqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Bacteriophages play a crucial role in shaping bacterial communities, yet the mechanisms by which nonmotile bacteriophages interact with their hosts remain poorly understood. This knowledge gap is especially pronounced in structured environments like soil, where spatial constraints and air-filled zones hinder aqueous diffusion. In soil, hyphae of filamentous microorganisms form a network of 'fungal highways' (FHs) that facilitate the dispersal of other microorganisms. We propose that FHs also promote bacteriophage dissemination. Viral particles can diffuse in liquid films surrounding hyphae or be transported by infectable (host) or uninfectable (nonhost) bacterial carriers coexisting on FH networks. To test this, two bacteriophages that infect Pseudomonas putida DSM291 (host) but not KT2440 (nonhost) were used. In the absence of carriers, bacteriophages showed limited diffusion on 3D-printed abiotic networks, but diffusion was significantly improved in Pythium ultimum-formed FHs when the number of connecting hyphae exceeded 20. Transport by both host and nonhost carriers enhanced bacteriophage dissemination. Host carriers were five times more effective in transporting bacteriophages, particularly in FHs with over 30 connecting hyphae. This study enhances our understanding of bacteriophage dissemination in nonsaturated environments like soils, highlighting the importance of biotic networks and bacterial hosts in facilitating this process.
Collapse
Affiliation(s)
- Claire Périat
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Matteo Buffi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Andrea Corona-Ramirez
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Patrick S Chain
- Los Alamos National Laboratory, Bioscience Division, P.O. Box 1663, NM 87545, Los Alamos, United States
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, B304, Bessemer Building, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
5
|
Mafla-Endara PM, Meklesh V, Beech JP, Ohlsson P, Pucetaite M, Hammer EC. Exposure to polystyrene nanoplastics reduces bacterial and fungal biomass in microfabricated soil models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166503. [PMID: 37633381 DOI: 10.1016/j.scitotenv.2023.166503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanoplastics have been proven to induce toxicity in diverse organisms, yet their effect on soil microbes like bacteria and fungi remains largely unexplored. In this paper, we used micro-engineered soil models to investigate the effect of polystyrene (PS) nanospheres on Pseudomonas putida and Coprinopsis cinerea. Specifically, we explored the effects of increasing concentrations of 60 nm carboxylated bovine serum albumin (BSA) coated nanospheres (0, 0.5, 2, and 10 mg/L) on these bacterial and fungal model organisms respectively, over time. We found that both microorganisms could disperse through the PS solution, but long-distance dispersal was reduced by high concentrations. Microbial biomass decreased in all treatments, in which bacteria showed a linear dose response with the strongest effect at 10 mg/L concentration, and fungi showed a non-linear response with the strongest effect at 2 mg/L concentration. At the highest nanoplastics concentration, the first colonizing fungal hyphae adsorbed most of the PS nanospheres present in their vicinity, in a process that we termed the 'vacuum cleaner effect'. As a result, the toxicity effect of the original treatment on subsequently growing fungal hyphae was reduced to a growth level indistinguishable from the control. We did not find evidence that nanoplastics are able to penetrate bacterial nor fungal cell walls. Overall, our findings provide evidence that nanoplastics can cause a direct negative effect on soil microbes and highlight the need for further studies that can explain how the microbial stress response might affect soil functions.
Collapse
Affiliation(s)
- Paola M Mafla-Endara
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden.
| | - Viktoriia Meklesh
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Physical Chemistry Division, Department of Chemistry, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Department of Physics and NanoLund, Lund University, Lund, Sweden
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | | | - Edith C Hammer
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
7
|
Xiong BJ, Stanley CE, Dusny C, Schlosser D, Harms H, Wick LY. pH Distribution along Growing Fungal Hyphae at Microscale. J Fungi (Basel) 2022; 8:599. [PMID: 35736082 PMCID: PMC9224906 DOI: 10.3390/jof8060599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Claire E. Stanley
- Department of Bioengineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, UK;
| | - Christian Dusny
- Helmholtz Centre for Environmental Research-UFZ, Department of Solar Materials, Permoserstraβe 15, 04318 Leipzig, Germany;
| | - Dietmar Schlosser
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| |
Collapse
|
8
|
Koskella B, Hernandez CA, Wheatley RM. Understanding the Impacts of Bacteriophage Viruses: From Laboratory Evolution to Natural Ecosystems. Annu Rev Virol 2022; 9:57-78. [PMID: 35584889 DOI: 10.1146/annurev-virology-091919-075914] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses of bacteriophages (phages) have broad effects on bacterial ecology and evolution in nature that mediate microbial interactions, shape bacterial diversity, and influence nutrient cycling and ecosystem function. The unrelenting impact of phages within the microbial realm is the result, in large part, of their ability to rapidly evolve in response to bacterial host dynamics. The knowledge gained from laboratory systems, typically using pairwise interactions between single-host and single-phage systems, has made clear that phages coevolve with their bacterial hosts rapidly, somewhat predictably, and primarily by counteradapting to host resistance. Recent advancement in metagenomics approaches, as well as a shifting focus toward natural microbial communities and host-associated microbiomes, is beginning to uncover the full picture of phage evolution and ecology within more complex settings. As these data reach their full potential, it will be critical to ask when and how insights gained from studies of phage evolution in vitro can be meaningfully applied to understanding bacteria-phage interactions in nature. In this review, we explore the myriad ways that phages shape and are themselves shaped by bacterial host populations and communities, with a particular focus on observed and predicted differences between the laboratory and complex microbial communities. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, USA;
| | - Catherine A Hernandez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
9
|
You X, Kallies R, Kühn I, Schmidt M, Harms H, Chatzinotas A, Wick LY. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. THE ISME JOURNAL 2022; 16:1275-1283. [PMID: 34903848 PMCID: PMC9039081 DOI: 10.1038/s41396-021-01155-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022]
Abstract
Nonmotile microorganisms often enter new habitats by co-transport with motile microorganisms. Here, we report that also lytic phages can co-transport with hyphal-riding bacteria and facilitate bacterial colonization of a new habitat. This is comparable to the concept of biological invasions in macroecology. In analogy to invasion frameworks in plant and animal ecology, we tailored spatially organized, water-unsaturated model microcosms using hyphae of Pythium ultimum as invasion paths and flagellated soil-bacterium Pseudomonas putida KT2440 as carrier for co-transport of Escherichia virus T4. P. putida KT2440 efficiently dispersed along P. ultimum to new habitats and dispatched T4 phages across air gaps transporting ≈0.6 phages bacteria−1. No T4 displacement along hyphae was observed in the absence of carrier bacteria. If E. coli occupied the new habitat, T4 co-transport fueled the fitness of invading P. putida KT2440, while the absence of phage co-transport led to poor colonization followed by extinction. Our data emphasize the importance of hyphal transport of bacteria and associated phages in regulating fitness and composition of microbial populations in water-unsaturated systems. As such co-transport seems analogous to macroecological invasion processes, hyphosphere systems with motile bacteria and co-transported phages could be useful models for testing hypotheses in invasion ecology.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Ingolf Kühn
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstr. 33, Leipzig, 04103, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
10
|
You X, Kallies R, Hild K, Hildebrandt A, Harms H, Chatzinotas A, Wick LY. Transport of marine tracer phage particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152704. [PMID: 34973315 DOI: 10.1016/j.scitotenv.2021.152704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Marine phages have been applied to trace ground- and surface water flows. Yet, information on their transport in soil and related particle intactness is limited. Here we compared the breakthrough of two lytic marine tracer phages (Pseudoalteromonas phages PSA-HM1 and PSA-HS2) with the commonly used Escherichia virus T4 in soil- and sand-filled laboratory percolation columns. All three phages showed high mass recoveries in the effluents and a higher transport velocity than non-reactive tracer Br-. Comparison of effluent gene copy numbers (CN) to physically-determined phage particle counts or infectious phage counts showed that PSA-HM1 and PSA-HS2 retained high phage particle intactness (Ip > 81%), in contrast to T4 (Ip < 36%). Our data suggest that marine phages may be applied in soil to mimic the transport of (bio-) colloids or anthropogenic nanoparticles of similar traits. Quantitative PCR (qPCR) thereby allows for highly sensitive quantification and thus for the detection of even highly diluted marine tracer phages in environmental samples.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Konstanze Hild
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Anke Hildebrandt
- Helmholtz Centre for Environmental Research - UFZ, Department of Computational Hydrosystems, Permoserstraße 15, 04318 Leipzig, Germany; Friedrich Schiller University Jena, Institute of Geoscience, Burgweg 11, 07749 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; Leipzig University, Institute of Biology, Talstr.33, Leipzig 04103, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
11
|
Yang W, Cai C, Dai X. Interactions between virus surrogates and sewage sludge vary by viral analyte: Recovery, persistence, and sorption. WATER RESEARCH 2022; 210:117995. [PMID: 34998072 DOI: 10.1016/j.watres.2021.117995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Sewage sludge, as a reservoir of viruses, may pose threats to human health. Understanding how virus particles interact with sludge is the key to controlling virus exposure and transmission. In this study, we investigated the recovery, survivability, and sorption of four typical virus surrogates with different structures (Phi6, MS2, T4, and Phix174) in sewage sludge. The most effective elution method varies by viral analyte, while the ultrafiltration method could significantly reduce the recovery loss for all four viruses. Compared with nonenveloped viruses, the poor recoveries of Phi6 during elution (<15%) limited its efficient detection. The inactivation kinetics of four viruses in solid-containing sludge were significantly faster than those in solid-removed samples at 25 °C, indicating that the solid fraction of sludge played an important role in virus inactivation. Although enveloped Phi6 was more vulnerable in both solid-removed and solid-containing sludge samples, it could remain viable for several hours at 25 °C and several days at 4 °C, which may pose an infection risk during sludge collection, transportation, and treatment process. The adsorption and desorption behavior of viruses in sludge could be affected by virus envelope structure, capsid proteins, and virus particle size. Phi6 adsorption to sludge was great with log KF of 6.51 ± 0.53, followed by Phix174, MS2, and T4. Additionally, more than 95% of Phi6, MS2, and T4 adsorbed to sludge were strongly bound, and a considerable fraction of strongly-bound virus was confirmed to retain viability. These results shed light on the environmental behavior of viruses in sewage sludge and provide a theoretical basis for the risk assessment for sludge treatment and disposal.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
You X, Klose N, Kallies R, Harms H, Chatzinotas A, Wick LY. Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport Phages. Viruses 2022; 14:195. [PMID: 35215789 PMCID: PMC8877629 DOI: 10.3390/v14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Recent studies have demonstrated that phages can be co-transported with motile non-host bacteria, thereby enabling their invasion of biofilms and control of biofilm composition. Here, we developed a novel approach to isolate non-host bacteria able to co-transport phages from soil. It is based on the capability of phage-carrying non-host bacteria to move along mycelia out of soil and form colonies in plaques of their co-transported phages. The approach was tested using two model phages of differing surface hydrophobicity, i.e., hydrophobic Escherichia virus T4 (T4) and hydrophilic Pseudoalteromonas phage HS2 (HS2). The phages were mixed into soil and allowed to be transported by soil bacteria along the mycelia of Pythium ultimum. Five phage-carrying bacterial species were isolated (Viridibacillus sp., Enterobacter sp., Serratia sp., Bacillus sp., Janthinobacterium sp.). These bacteria exhibited phage adsorption efficiencies of ≈90-95% for hydrophobic T4 and 30-95% for hydrophilic HS2. The phage adsorption efficiency of Viridibacillus sp. was ≈95% for both phages and twofold higher than T4-or HS2-adsorption to their respective hosts, qualifying Viridibacillus sp. as a potential super carrier for phages. Our approach offers an effective and target-specific way to identify and isolate phage-carrying bacteria in natural and man-made environments.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Niclas Klose
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - René Kallies
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstr.33, 04103 Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| |
Collapse
|
13
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
14
|
Xiong BJ, Dusny C, Wang L, Appel J, Lindstaedt K, Schlosser D, Harms H, Wick LY. Illuminate the hidden: in vivo mapping of microscale pH in the mycosphere using a novel whole-cell biosensor. ISME COMMUNICATIONS 2021; 1:75. [PMID: 36765263 PMCID: PMC9723660 DOI: 10.1038/s43705-021-00075-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
The pH of an environment is both a driver and the result of diversity and functioning of microbial habitats such as the area affected by fungal hyphae (mycosphere). Here we used a novel pH-sensitive bioreporter, Synechocystis sp. PCC6803_peripHlu, and ratiometric fluorescence microscopy, to spatially and temporally resolve the mycosphere pH at the micrometre scale. Hyphae of the basidiomycete Coprionopsis cinerea were allowed to overgrow immobilised and homogeneously embedded pH bioreporters in an agarose microcosm. Signals of >700 individual cells in an area of 0.4 × 0.8 mm were observed over time and used to create highly resolved (3 × 3 µm) pH maps using geostatistical approaches. C. cinerea changed the pH of the agarose from 6.9 to ca. 5.0 after 48 h with hyphal tips modifying pH in their vicinity up to 1.8 mm. pH mapping revealed distinct microscale spatial variability and temporally stable gradients between pH 4.4 and 5.8 over distances of ≈20 µm. This is the first in vivo mapping of a mycosphere pH landscape at the microscale. It underpins the previously hypothesised establishment of pH gradients serving to create spatially distinct mycosphere reaction zones.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lin Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jens Appel
- Department of Biology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 5, 24118, Kiel, Germany
| | - Kristin Lindstaedt
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
15
|
Sun Y, Tayagui A, Sale S, Sarkar D, Nock V, Garrill A. Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. MICROMACHINES 2021; 12:mi12060639. [PMID: 34070887 PMCID: PMC8227076 DOI: 10.3390/mi12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
Pathogenic fungi and oomycetes give rise to a significant number of animal and plant diseases. While the spread of these pathogenic microorganisms is increasing globally, emerging resistance to antifungal drugs is making associated diseases more difficult to treat. High-throughput screening (HTS) and new developments in lab-on-a-chip (LOC) platforms promise to aid the discovery of urgently required new control strategies and anti-fungal/oomycete drugs. In this review, we summarize existing HTS and emergent LOC approaches in the context of infection strategies and invasive growth exhibited by these microorganisms. To aid this, we introduce key biological aspects and review existing HTS platforms based on both conventional and LOC techniques. We then provide an in-depth discussion of more specialized LOC platforms for force measurements on hyphae and to study electro- and chemotaxis in spores, approaches which have the potential to aid the discovery of alternative drug targets on future HTS platforms. Finally, we conclude with a brief discussion of the technical developments required to improve the uptake of these platforms into the general laboratory environment.
Collapse
Affiliation(s)
- Yiling Sun
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ayelen Tayagui
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Sarah Sale
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Debolina Sarkar
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Volker Nock
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence: (V.N.); (A.G.)
| | - Ashley Garrill
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (V.N.); (A.G.)
| |
Collapse
|
16
|
Yu Z, Schwarz C, Zhu L, Chen L, Shen Y, Yu P. Hitchhiking Behavior in Bacteriophages Facilitates Phage Infection and Enhances Carrier Bacteria Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2462-2472. [PMID: 33381966 DOI: 10.1021/acs.est.0c06969] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interactions between bacteriophages (phages) and biofilms remain poorly understood despite the broad implications for microbial ecology, water quality, and microbiome engineering. Here, we demonstrate that lytic coliphage PHH01 can hitchhike on carrier bacteria Bacillus cereus to facilitate its infection of host bacteria, Escherichia coli, in biofilms. Specifically, PHH01 could adsorb onto the flagella of B. cereus, and thus phage motility was increased, resulting in 4.36-fold more effective infection of E. coli in biofilm relative to free PHH01 alone. Moreover, phage infection mitigated interspecies competition and enhanced B. cereus colonization; the fraction of B. cereus in the final biofilm increased from 9% without phages to 43% with phages. The mutualistic relationship between the coliphage and carrier bacteria was substantiated by migration tests on an E. coli lawn: the conjugation of PHH01 and B. cereus enhanced B. cereus colonization by 6.54-fold compared to B. cereus alone (6.15 vs 0.94 cm2 in 24 h) and PHH01 migration by 5.15-fold compared to PHH01 alone (10.3 vs 2.0 mm in 24 h). Metagenomic and electron microscopic analysis revealed that the phages of diverse taxonomies and different morphologies could be adsorbed by the flagella of B. cereus, suggesting hitchhiking on flagellated bacteria might be a widespread strategy in aquatic phage populations. Overall, our study highlights that hitchhiking behavior in phages can facilitate phage infection of biofilm bacteria, promote carrier bacteria colonization, and thus significantly influence biofilm composition, which holds promise for mediating biofilm functions and moderating associated risks.
Collapse
Affiliation(s)
- Zhuodong Yu
- School of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Liang Zhu
- School of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Linlin Chen
- School of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yun Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|