1
|
Xie Q, Li Z, Chen Y, Zhao Y, Xu Y, Hong Z, Chen Z, Zhang Z, Xu H, Yin Z, Wu X. Mass Spectrometry Imaging Reveals the Morphology-Dependent Toxicological Effects of Nanosilvers on Multiple Organs of Adult Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10015-10027. [PMID: 38798012 DOI: 10.1021/acs.est.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nanosilvers with multifarious morphologies have been extensively used in many fields, but their morphology-dependent toxicity toward nontarget aquatic organisms remains largely unclear. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the toxicological effects of silver nanomaterials with various morphologies on spatially resolved lipid profiles within multiple organs in adult zebrafish, especially for the gill, liver, and intestine. Integrated with histopathology, enzyme activity, accumulated Ag contents and amounts, as well as MSI results, we found that nanosilvers exhibit morphology-dependent nanotoxicity by disrupting lipid levels and producing oxidative stress. Silver nanospheres (AgNSs) had the highest toxicity toward adult zebrafish, whereas silver nanoflakes (AgNFs) exhibited greater toxicity than silver nanowires (AgNWs). Levels of differential phospholipids, such as PC, PE, PI, and PS, were associated with nanosilver morphology. Notably, we found that AgNSs induced greater toxicity in multiple organs, such as the brain, gill, and liver, while AgNWs and AgNFs caused greater toxicity in the intestine than AgNSs. Lipid functional disturbance and oxidative stress further caused inflammation and membrane damage after exposure to nanosilvers, especially with respect to sphere morphology. Taken together, these findings will contribute to clarifying the toxicological effects and mechanisms of different morphologies of nanosilvers in adult zebrafish.
Collapse
Affiliation(s)
- Qingrong Xie
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhouyi Hong
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zilong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhou Y, Wu C, Li Y, Jiang H, Miao A, Liao Y, Pan K. Effects of nanoplastics on clam Ruditapes philippinarum at environmentally realistic concentrations: Toxicokinetics, toxicity, and gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131647. [PMID: 37245360 DOI: 10.1016/j.jhazmat.2023.131647] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Nanoplastics are ubiquitous in marine environments, understanding to what extent nanoplastics accumulate in bivalves and the adverse effects derived from their retention is imperative for evaluating the detrimental effects in the benthic ecosystem. Here, using palladium-doped polystyrene nanoplastics (139.5 nm, 43.8 mV), we quantitatively determined nanoplastic accumulation in Ruditapes philippinarum and investigated its toxic effects by combining physiological damage assessments with a toxicokinetic model and 16 S rRNA sequencing. After a 14 days exposure, significant nanoplastic accumulation was observed, up to 17.2 and 137.9 mg·kg-1 for the environmentally realistic (0.02 mg·L-1) and ecologically (2 mg·L-1) relevant groups, respectively. Ecologically relevant nanoplastic concentrations evidently attenuated the total antioxidant capacity and stimulated excessive reactive oxygen species, which elicited lipid peroxidation, apoptosis, and pathological damage. The modeled uptake (k1) and elimination (k2) rate constants (from physiologically based pharmacokinetic model) were significantly negatively correlated with short-term toxicity. Although no obvious toxic effects were found, environmentally realistic exposures notably altered the intestinal microbial community structure. This work increases our understanding of how the accumulation of nanoplastics influences their toxic effects in terms of the toxicokinetics and gut microbiota, providing further evidence of their potential environmental risks.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Aijun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yongyan Liao
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Wu J, Sun J, Bosker T, Vijver MG, Peijnenburg WJGM. Toxicokinetics and Particle Number-Based Trophic Transfer of a Metallic Nanoparticle Mixture in a Terrestrial Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2792-2803. [PMID: 36747472 DOI: 10.1021/acs.est.2c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we investigated to which extent metallic nanoparticles (MNPs) affect the trophic transfer of other coexisting MNPs from lettuce to terrestrial snails and the associated tissue-specific distribution using toxicokinetic (TK) modeling and single-particle inductively coupled plasma mass spectrometry. During a period of 22 days, snails were fed with lettuce leaves that were root exposed to AgNO3 (0.05 mg/L), AgNPs (0.75 mg/L), TiO2NPs (200 mg/L), and a mixture of AgNPs and TiO2NPs (equivalent doses as for single NPs). The uptake rate constants (ku) were 0.08 and 0.11 kg leaves/kg snail/d for Ag and 1.63 and 1.79 kg leaves/kg snail/d for Ti in snails fed with NPs single- and mixture-exposed lettuce, respectively. The elimination rate constants (ke) of Ag in snails exposed to single AgNPs and mixed AgNPs were comparable to the corresponding ku, while the ke for Ti were lower than the corresponding ku. As a result, single TiO2NP treatments as well as exposure to mixtures containing TiO2NPs induced significant biomagnification from lettuce to snails with kinetic trophic transfer factors (TTFk) of 7.99 and 6.46. The TTFk of Ag in the single AgNPs treatment (1.15 kg leaves/kg snail) was significantly greater than the TTFk in the mixture treatment (0.85 kg leaves/kg snail), while the fraction of Ag remaining in the body of snails after AgNPs exposure (36%) was lower than the Ag fraction remaining after mixture exposure (50%). These results indicated that the presence of TiO2NPs inhibited the trophic transfer of AgNPs from lettuce to snails but enhanced the retention of AgNPs in snails. Biomagnification of AgNPs from lettuce to snails was observed in an AgNPs single treatment using AgNPs number as the dose metric, which was reflected by the particle number-based TTFs of AgNPs in snails (1.67, i.e., higher than 1). The size distribution of AgNPs was shifted across the lettuce-snail food chain. By making use of particle-specific measurements and fitting TK processes, this research provides important implications for potential risks associated with the trophic transfer of MNP mixtures.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EEThe Hague, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BABilthoven, The Netherlands
| |
Collapse
|
4
|
Zhang L, Wang WX. Silver nanoparticle toxicity to the larvae of oyster Crassostrea angulata: Contribution of in vivo dissolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159965. [PMID: 36343823 DOI: 10.1016/j.scitotenv.2022.159965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxic mechanism of silver nanoparticles (AgNPs) is crucial for it risk assessment in marine environment, but the role of Ag+ release in the AgNP toxicity to marine biota is not yet well addressed. This study investigated the toxicity of AgNPs to the veliger larvae of oyster Crassostrea angulata, with a specific focus on the possibility of the involvement of in vivo dissolution of AgNPs in the toxicity via an aggregation-induced emission luminogen (AIEgen)-based imaging technique. AgNO3 exhibited significantly greater toxicity than AgNPs based on the total Ag, as indicated by lower 50 % growth inhibition concentration (EC50). The average concentration of soluble Ag in seawater at the EC50 of AgNPs was far lower than the EC50 of AgNO3, indicating that the AgNP toxicity could not be fully explained by the dissolved Ag in the medium. Despite the comparable soluble Ag concentration in seawater for both treatments, more Ag was accumulated in the larvae exposed to AgNPs, suggesting their ability to directly ingest particulate Ag, which was further confirmed by the presence of AgNPs aggregates in the esophagus and stomach. With the application of AIEgen-based imaging technique, in vivo dissolution of AgNPs in oyster larvae was thoroughly verified by an increase in Ag(I) content in the larvae exposed to AgNPs after depuration. The results collectively implied that apart from the Ag released in the medium, the Ag dissolved from the ingested AgNPs may also greatly contribute to the toxicity of AgNPs toward the oyster larvae. The findings of this work shed new light on the bioavailability and toxicity of AgNPs in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Luo Y, Wang WX. Roles of hemocyte subpopulations in silver nanoparticle transformation and toxicity in the oysters Crassostrea hongkongensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119281. [PMID: 35413408 DOI: 10.1016/j.envpol.2022.119281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Hemocytes are the main immune cells in bivalve mollusks and one of the sensitive targets for nanoparticle toxicity. Bivalve hemocytes consist of multiple functional heterogeneous cell types, but their different roles in immune system against foreign particles remain largely unknown. In order to clarify the different immune responses of hemocyte subpopulations to silver nanoparticles (AgNPs) and Ag ions, in this study, the Hong Kong oyster (Crassostrea hongkongensis) hemocytes were employed and separated into three subpopulations based on their cell size and granularity, including agranulocytes (R1), semigranulocytes (R2), and granulocytes (R3). We first demonstrated that AgNPs could rapidly enter into the oyster hemocytes within 3 h by phagocytosis process and resulted in different immune responses in hemocyte subpopulations. The most affected cell subtype by AgNPs was the granulocytes, followed by semigranulocytes, whereas agranulocytes were not affected following exposure to AgNPs. Interestingly, AgNPs induced the granule formation in semigranulocytes and further increased the proportion of granulocytes, whereas their ionic counterparts had no such effects on hemocyte composition, indicating the different detoxification mechanisms for nanoparticulate and ionic form. Following AgNP exposure, the dissolved Ag ions were accumulated in lysosomes and caused lysosomal dysfunction, indicating that lysosomes were the main targets for AgNP toxicity and the dissolved Ag ions were the main contributor of AgNP toxicity. Furthermore, AgNP exposure induced reactive oxygen production and impeded the lysosome function and phagocytosis in granulocytes, with impaired immunity system in oysters. Our study identified the different immune responses of oyster hemocyte subpopulations to AgNPs based on the in vitro short-term exposure assays, which may be applied to rapidly evaluate the ecotoxicological risks of different nanoparticles in aquatic systems.
Collapse
Affiliation(s)
- Yali Luo
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Yan N, Wang WX. Maternal transfer and biodistribution of citrate and luminogens coated silver nanoparticles in medaka fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128862. [PMID: 35398793 DOI: 10.1016/j.jhazmat.2022.128862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Given the wide applications of silver nanoparticles (AgNPs), it is necessary to evaluate their potentially adverse long-term effects. In this study, we performed a 100-day exposure of medaka fish to citrate and luminogens coated AgNPs and investigated the maternal transfer potentials and biodistribution of AgNPs. Following long-term AgNPs exposure, AgNPs were mainly distributed in the liver, followed by gills, intestine, and brain, but were also detected in the ovary and strongly colocalized with the dissolved Ag+. The quantified transfer efficiency of different Ag species was 1.56-5.07%. Long-term exposure of medaka to small size of AgNPs (20 nm) reduced the hatching rate attributable to the accumulation of AgNPs and their dissolved Ag+. The maternally transferred AgNPs were mainly concentrated in the Kupffer's vesicle of embryos, while their dissolved Ag+ was almost homogeneously distributed in the embryos. In contrast, the newly accumulated AgNPs were mainly absorbed at the chorion of embryos. During initial larval development, the maternally transferred AgNPs and their dissolved Ag+ were consistently concentrated in intestine. Significant dissolution of maternally transferred AgNPs occurred during larval development. Our results showed that long-term exposure to AgNPs caused distinct biodistribution in the next generation of medaka, and may have implications for assessing their potential adverse effects.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
7
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
8
|
Gao Y, Wu W, Qiao K, Feng J, Zhu L, Zhu X. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes. WATER RESEARCH 2021; 204:117603. [PMID: 34536684 DOI: 10.1016/j.watres.2021.117603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Determining the bioavailability and toxicity mechanism of silver nanoparticles (AgNPs) is challenging as Ag+ is continuously released by external or internal AgNP dissolution in the actual exposure system (regardless of the laboratory or the natural environment). Here a novel pulsed-gradient Ag+ (AgNO3) exposure was conducted with zebrafish (Danio rerio) larvae to simulate dissolved gradient concentrations of Ag+ from polyvinylpyrrolidone (PVP)-coated AgNPs. The accumulation and toxicity of the pulsed-gradient Ag+ (AgNO3) and, in the meantime, the released Ag+ from PVP-AgNPs were predicted using a toxicokinetic-toxicodynamic (TK-TD) model with obtained Ag+ parameters. In order to further understand the possible mechanism of PVP-AgNP releasing Ag+ in the body, subcellular fractions (S9) of zebrafish were also used to incubate with AgNPs in vitro to mimic the realistic in vivo scenarios. In the TK process, in vivo analysis showed that AgNPs released around twice as many Ag+ into the body than were detected with a single Ag+ pulse-exposure system; this was supported by evidence that subcellular S9 fractions might cause the PVP-AgNPs to lose the capping agent and favor Ag+ release. In the TD process, toxicity (survival rate) was predicted by the total bodily Ag(I) concentration, suggesting that AgNP toxicity in larvae was mainly due to gradually released Ag+ rather than AgNPs themselves. This study helps clarify the role of Ag+ in AgNP toxicity and offers a novel framework by which to investigate the toxicity of metal nanoparticles and corresponding metal ions in biological systems.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Weiran Wu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Kexin Qiao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
9
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
10
|
Shao Z, Guagliardo P, Jiang H, Wang WX. Intra- and Intercellular Silver Nanoparticle Translocation and Transformation in Oyster Gill Filaments: Coupling Nanoscale Secondary Ion Mass Spectrometry and Dual Stable Isotope Tracing Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:433-446. [PMID: 33325689 DOI: 10.1021/acs.est.0c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extensive application of silver nanoparticles (AgNPs) requires a full examination of their biological impacts, especially in aquatic systems where AgNPs are likely to end up. Despite numerous toxicity studies from molecular to individual levels, it is still a daunting challenge to achieve in situ subcellular imaging of Ag and to determine the sites of AgNP interaction with organelles or macromolecules simultaneously. Here, by coupling high-resolution nanoscale secondary ion mass spectrometry elemental mapping with scanning electron microscopy ultrastructural characterization, we successfully visualized the subcellular localization and the potential toxicity effects of AgNPs in the oyster gill filaments. The stable isotope tracing method was also adopted to investigate the respective uptake and transport mechanisms of differently labeled 109AgNPs and 107Ag+ ions. 109Ag hotspots were colocalized with endosomes or lysosomes, proving an endocytosis-based entry of AgNPs which passed through the barrier of oyster gill epithelium. These 109Ag hotspots showed a strong colocalization with 32S-. For the first time, we provided visualized evidence of AgNP-induced autophagy in the oyster gill cells. We further identified two categories of hemocytes (blood cells) and illustrated their roles in AgNP transport and sequestration. The integration of morphological and functional aspects of Ag subcellular distribution in different target cells suggested that oysters were equipped with a specialized endolysosomal (epithelial cells) or phagolysosomal system (hemocytes) in regulating the cellular process of AgNPs, during which the lysosome was the most involved organelle and sulfur was the most relevant macronutrient element. This study highlighted not only the intracellular but also the intercellular AgNP translocation and transformation, providing important subcellular imaging of silver and reliable methodology regarding bio-nano interactions in natural environments.
Collapse
Affiliation(s)
- Zishuang Shao
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment, State Key Laboratory of Marine Pollution, and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Wu J, Yu Q, Bosker T, Vijver MG, Peijnenburg WJGM. Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology 2020; 14:1399-1414. [PMID: 33074765 DOI: 10.1080/17435390.2020.1831639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Functionalized high-aspect-ratio silver nanowires (AgNWs) have been recognized as one of the most promising alternatives for fabricating products, with their use ranging from electronic devices to biomedical fields. Given concerns on the safety of AgNWs, there is an urgent need to investigate the relation between intrinsic properties of AgNWs and their toxicity. In this study, lettuce was exposed for either 6 or 18 d to different AgNWs to determine how the size/aspect ratio and coating of AgNWs affect the contributions of the dissolved and particulate Ag to the overall phytotoxicity and uptake kinetics. We found that the uncoated AgNW (39 nm diameter × 8.4 µm length) dissolved fastest of all AgNWs investigated. The phytotoxicity, uptake rate constants, and bioaccumulation factors of the PVP-coated AgNW (43 nm diameter × 1.8 µm length) and the uncoated AgNW (39 nm diameter × 8.4 µm length) were similar, and both were higher than that of the PVP-coated AgNW with the larger diameter(65 nm diameter × 4.4 µm length). These results showed that the diameter of the AgNWs predominantly affected toxicity and Ag accumulation in plants. Particulate Ag was found to be the predominant driver/descriptor of overall toxicity and Ag accumulation in the plants rather than dissolved Ag for all AgNWs tested. The relative contribution of dissolved versus particulate Ag to the overall effects was influenced by the exposure concentration and the extent of dissolution of AgNWs. This work highlights inherent particulate-dependent effects of AgNWs in plants and suggests that toxicokinetics should explicitly be considered for more nanomaterials and organisms, consequently providing more realistic input information for their environmental risk assessment.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Qi Yu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Leiden University College, Leiden University, Leiden, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, The Netherlands
| |
Collapse
|
12
|
Zhang L, Jiang H, Wang WX. Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11434-11442. [PMID: 32786557 DOI: 10.1021/acs.est.0c03342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To accurately assess the behavior and toxicity of silver nanoparticles (AgNPs), it is essential to understand their subcellular distribution and biotransformation. We combined both nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy to investigate the subcellular localization of Ag and in situ chemical distribution in the oyster larvae Crassostrea angulata after exposure to isotopically enriched 109AgNPs. Oyster larvae directly ingested particulate Ag, and in vivo dissolution of AgNPs occurred. The results collectively showed that AgNPs were much less bioavailable than Ag+, and the intracellular Ag was mainly originated from the soluble Ag, especially those dissolved from the ingested AgNPs. AgNPs absorbed on the cell membranes continued to release Ag ions, forming inorganic Ag-S complexes extracellularly, while Ag-organosulfur complexes were predominantly formed intracellularly. The internalized Ag could bind to the sulfur-rich molecules (S-donors) in the cytosol and/or be sequestered in the lysosomes of velum, esophagus, and stomach cells, as well as in the digestive vacuoles of digestive cells, which could act as a detoxification pathway for the oyster larvae. Ag was also occasionally incorporated into the phosphate granules, rough endoplasmic reticulum, and mitochondria. Our work provided definite evidence for the partial sulfidation of AgNPs after interaction with oyster larvae and shed new light on the bioavailability and fate of nanoparticles in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Marine Environmental Laboratory, Shenzhen Research Institute, HKUST, Shenzhen 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Washington 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hongkong, Kowloon, Hong Kong
| |
Collapse
|