1
|
Bang Truong H, Nguyen THT, Ba Tran Q, Son Lam V, Thao Nguyen Nguyen T, Cuong Nguyen X. Algae-constructed wetland integrated system for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 406:131003. [PMID: 38925406 DOI: 10.1016/j.biortech.2024.131003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Integrating algae into constructed wetlands (CWs) enhances wastewater treatment, although the results vary. This review evaluates the role of algae in CWs and the performance of different algae-CW (A-CW) configurations based on literature and meta-analysis. Algae considerably improve N removal, although their impact on other parameters varies. Statistical analysis revealed that 70 % of studies report improved treatment efficiencies with A-CWs, achieving average removal rates of 75 % for chemical oxygen demand (COD), 74 % for total nitrogen and ammonium nitrogen, and 79 % for total phosphorus (TP). This review identifies hydraulic retention times, which average 3.1 days, and their varied impact on treatment efficacy. Mixed-effects models showed a slight increase in COD and TP removal efficiencies of 0.6 % every ten days in the A-CWs. Future research should focus on robust experimental designs, adequate algal storage and separation techniques, and advanced modeling to optimize the treatment potential of algae in CWs.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Viet Nam
| | - T Hong Tinh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Quoc Ba Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Vinh Son Lam
- HUTECH Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - T Thao Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Lam KY, Yu ZH, Flick R, Noble AJ, Passeport E. Triclosan uptake and transformation by the green algae Euglena gracilis strain Z. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155232. [PMID: 35427625 DOI: 10.1016/j.scitotenv.2022.155232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Triclosan is an antimicrobial chemical present in consumer products that is frequently detected in aquatic environments. In this research, we investigated the role of a common freshwater microalgae species, Euglena gracilis for triclosan uptake and transformation in open-water treatment wetlands. Lab-scale wetland bioreactors were created under various conditions of light (i.e., continuous (white) light, red light, and in the dark), media (i.e., wetland, autoclaved wetland, Milli-Q, and growth media water), and presence or absence of algae. Triclosan and its potential transformation products were identified in the water and algae phases. Triclosan transformation occurred most rapidly with reactors that received continuous (white) light, with pseudo first-order rate constants, k, ranging from 0.035 to 0.292 day-1. This indicates that phototransformation played a major role in triclosan transformation during the day, despite light screening by algae. Algae contributed to the uptake and transformation of triclosan in all reactors, and algae and bacteria both contributed to triclosan biotransformation under dark conditions, representative of nighttime conditions. Some transformation products were formed and further transformed, e.g., triclosan-O-sulfate, methoxy and diglucosyl conjugate of hydroxylated triclosan, and dimethoxy and glucosyl conjugate of 2,4-dichlorophenol, suggesting their minimal accumulation over the 25 days of the experiments. This study shows that the combined action of light, microbes, and algae allows the safe transfer and transformation of triclosan in open-water treatment wetlands.
Collapse
Affiliation(s)
- Ka Yee Lam
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Zhu Hao Yu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Adam J Noble
- Noblegen Inc., 2140 East Bank Dr., Peterborough, Ontario K9L 1Z8, Canada
| | - Elodie Passeport
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
3
|
Guo S, Zhan LW, Zhu GK, Wu XG, Li BD. Scale-Up and Development of Synthesis 2-Ethylhexyl Nitrate in Microreactor Using the Box–Behnken Design. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuai Guo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le-wu Zhan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guang-kai Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin-guang Wu
- Xi‘an North Huian Chemical Industry Co., Ltd., Xi‘an 710000, China
| | - Bin-dong Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Dong X, He Y, Peng X, Jia X. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. BIORESOURCE TECHNOLOGY 2021; 319:124134. [PMID: 32966969 DOI: 10.1016/j.biortech.2020.124134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) is applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. In this study, the effects of TCS on phosphate removal and bacterial community shifts of activated sludge, especially on functional bacteria variation, were investigated. Compared with the control group (R-control), the treatment group (R-TCS) with 100 μg/L TCS inhibited the microbial growth. In addition, the phosphorus removal efficiency of PO43--P and total phosphorus removal rates declined by 15.99% and 7.81%, respectively. Proteobacteria gradually dominated the microorganisms. The growths of Proteobacteria and Bacteroidetes were inhibited when 150 μg/L of TCS was added. Moreover, the differences in the microbial community structures of the R-control and R-TCS groups gradually expanded, no obvious difference was observed in the final stage, and the interrelationships of microbes in the latter weakened. The long-term addition of TCS impairs the growth of polyphosphate-accumulating organisms (PAOs).
Collapse
Affiliation(s)
- Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Liao K, Hu H, Ren H. Combined influences of process parameters on microorganism-derived dissolved organic nitrogen (mDON) formation at low temperatures: Multivariable statistical and systematic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140732. [PMID: 32711305 DOI: 10.1016/j.scitotenv.2020.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Regulation of process parameters is a cost-effective approach to control microorganism-derived dissolved organic nitrogen (mDON) formation in low-temperature biological wastewater conditions. However, the integrated influence of multiple parameters in this process is poorly defined. In this study, mathematical methodology was used to evaluate the combined effects of hydraulic retention time (HRT), solids retention time (SRT), and mixed liquor suspended solids (MLSS) on mDON formation at 8 °C. This study also systematically explored how multiple combinations of those three parameters affected mDON chemodiversity (fluorescent properties and molecular compositions), microbial compositions, and specific relationships between mDON molecules and microbial species in activated sludge systems. Results showed that combined effects significantly controlled the mDON formation at 8 °C (P < .05). The systematic analysis suggested that the multi-parameter effects modulated the distribution of different mDON compositions and shaped the microbial communities. Most bacterial phyla as the generalist and a few as the specialist were displayed in 2487 pairs of strong microbe-mDON connections (|r| ≥ 0.6, P < .05). Moreover, network analysis on microbe-mDON relationships identified the network centers as crucial media in terms of combined effects of process parameters on mDON formation. Our results provide comprehensive insight on the roles of multi-parameter covariation influences in regulating the high complexity of mDON traits and microbe-mDON linkages, thereby highlighting the necessity to focus on the combined effects of process parameters for effective and correct controlling strategies on mDON concentrations.
Collapse
Affiliation(s)
- Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
6
|
Martinez-Guerra E, Ghimire U, Nandimandalam H, Norris A, Gude VG. Wetlands for environmental protection. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1677-1694. [PMID: 32744347 DOI: 10.1002/wer.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland-based treatment technologies for protecting water resources and environment covering papers published in 2019. Wetland applications in wastewater treatment, stormwater management, and removal of nutrients, metals, and emerging pollutants including pathogens are highlighted. A summary of studies focusing on the effects of vegetation, wetland design and operation strategies, and process configurations and modeling, for efficient treatment of various municipal and industrial wastewaters, is included. In addition, hybrid and innovative processes with wetlands as a platform treatment technology are presented.
Collapse
Affiliation(s)
- Edith Martinez-Guerra
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Anna Norris
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| |
Collapse
|