1
|
Li Y, Wu M, Yin X, Wang Y, Tan D, Zhang P, Zhou Z, Wang D, Jones KC, Zhang H. Development and validation of an imprinted polymer based DGT for monitoring β-blocker drugs in wastewater surveillance. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135753. [PMID: 39259989 DOI: 10.1016/j.jhazmat.2024.135753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Wastewater surveillance is an effective and objective approach to monitor contaminant releases and drug usage in the catchment, the estimation requires accurate measurement. In this study, a novel diffusive gradients in thin-film (DGT) technique based on molecularly imprinted polymers (MIPs) for selective measurement of a class of widely prescribed cardiovascular drugs (β-blockers) in wastewater was developed. The synthesized MIPs showed strong affinity and selectivity for the target compounds. The MIP-DGT had large effective capacities, its performance was independent of a wide range of environmental conditions, including pH (4.58 - 8.89), ionic strength (0.01 - 0.5 M) and dissolved organic matter (< 20 mg L-1). Biofouling had little effect on the uptake of target compounds within 7 days. MIP-DGT devices were applied in a Chinese urban WWTP alongside an auto-sampler. Metoprolol concentrations detected were much higher than other β-blockers. Concentrations obtained using MIP-DGT were comparable to the 24 h composite samples using an autosampler. The estimated daily consumption calculated based on the data obtained with MIP-DGT implied that metoprolol and propranolol were the most popular β-blockers in the studied area. Overall, the results in this study demonstrate that the MIP-DGT is a cost-effective, reliable and efficient tool for in situ wastewater monitoring.
Collapse
Affiliation(s)
- Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Mingzhe Wu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Xinyu Yin
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Yansong Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Peng Zhang
- School of Environmental Science and Technology, Shanxi University of Science & Technology, Xi'an 710021, PR China
| | - Zhimin Zhou
- Science and Technology on Underwater Test and Control Laboratory, The 760th Research Institute of China Shipbuilding Industry Corporation, Dalian, Liaoning 116023, PR China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
2
|
Tanveer R, Neale PA, Melvin SD, Leusch FDL. Application of in vitro bioassays to monitor pharmaceuticals in water: A synthesis of chronological analysis, mode of action, and practical insights. CHEMOSPHERE 2024; 359:142255. [PMID: 38729441 DOI: 10.1016/j.chemosphere.2024.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Pharmaceutical compounds in wastewater have emerged as a significant concern for the aquatic environment. The use of in vitro bioassays represents a sustainable and cost-effective approach for assessing the potential toxicological risks of these biologically active compounds in wastewater and aligns with ethical considerations in research. It facilitates high-throughput analysis, captures mixture effects, integrates impacts of both known and unknown chemicals, and reduces reliance on animal testing. The core aim of the current review was to explore the practical application of in vitro bioassays in evaluating the environmental impacts of pharmaceuticals in wastewater. This comprehensive review strives to achieve several key objectives. First, it provides a summary categorisation of pharmaceuticals based on their mode of action, providing a structured framework for understanding their ecological significance. Second, a chronological analysis of pharmaceutical research aims to document their prevalence and trends over time, shedding light on evolving environmental challenges. Third, the review critically analyses existing bioassay applications in wastewater, while also examining bioassay coverage of representative compounds within major pharmaceutical classes. Finally, it explores the potential for developing innovative bioassays tailored for water quality monitoring of pharmaceuticals, paving the way for more robust environmental monitoring and risk assessment. Overall, adopting effect-based methods for pharmaceutical monitoring in water holds significant promise. It encompasses a broad spectrum of biological impacts, promotes standardized protocols, and supports a bioassay test battery approach indicative of different endpoints, thereby enhancing the effectiveness of environmental risk assessment.
Collapse
Affiliation(s)
- Rameesha Tanveer
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
3
|
Nong Y, Xu M, Liu B, Li J, He D, Li C, Lin P, Luo Y, Dang C, Fu J. Low temperature acclimation of electroactive microorganisms may be an effective strategy to enhance the toxicity sensing performance of microbial fuel cell sensors. WATER RESEARCH 2024; 256:121566. [PMID: 38598948 DOI: 10.1016/j.watres.2024.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Microbial fuel cell (MFC) sensing is a promising method for real-time detection of water biotoxicity, however, the low sensing sensitivity limits its application. This study adopted low temperature acclimation as a strategy to enhance the toxicity sensing performance of MFC biosensor. Two types of MFC biosensors were started up at low (10 °C) or warm (25 °C) temperature, denoted as MFC-Ls and MFC-Ws respectively, using Pb2+ as the toxic substance. MFC-Ls exhibited superior sensing sensitivities towards Pb2+ compared with MFC-Ws at both low (10 °C) and warm (25 °C) operation temperatures. For example, the inhibition rate of voltage of MFC-Ls was 22.81 % with 1 mg/L Pb2+ shock at 10 °C, while that of MFC-Ws was only 5.9 %. The morphological observation showed the anode biofilm of MFC-Ls had appropriate amount of extracellular polymer substances, thinner thickness (28.95 μm for MFC-Ls and 41.58 μm for MFC-Ws) and higher proportion of living cells (90.65 % for MFC-Ls and 86.01 % for MFC-Ws) compared to that of MFC-Ws. Microbial analysis indicated the enrichment of psychrophilic electroactive microorganisms and cold-active enzymes as well as their sensitivity to Pb2+ shock was the foundation for the effective operation and good performance of MFC-Ls biosensors. In conclusion, low temperature acclimation of electroactive microorganisms enhanced not only the sensitivity but also the temperature adaptability of MFC biosensors.
Collapse
Affiliation(s)
- Yazhi Nong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Green Energy Industry Research Centre (GEIRC), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, United States.
| | - Jianfeng Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongye He
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Green Energy Industry Research Centre (GEIRC), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuanfu Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Green Energy Industry Research Centre (GEIRC), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pinyi Lin
- Department of Environmental Engineering, Wenhua College, Wuhan 430074, China
| | - Yin Luo
- Department of Environmental Engineering, Wenhua College, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Green Energy Industry Research Centre (GEIRC), Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Green Energy Industry Research Centre (GEIRC), Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
McPartland M, Stevens S, Bartosova Z, Vardeberg IG, Völker J, Wagner M. Beyond the Nucleus: Plastic Chemicals Activate G Protein-Coupled Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4872-4883. [PMID: 38440973 PMCID: PMC10956435 DOI: 10.1021/acs.est.3c08392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
G protein-coupled receptors (GPCRs) are central mediators of cell signaling and physiological function. Despite their biological significance, GPCRs have not been widely studied in the field of toxicology. Herein, we investigated these receptors as novel targets of plastic chemicals using a high-throughput drug screening assay with 126 human non-olfactory GPCRs. In a first-pass screen, we tested the activity of triphenol phosphate, bisphenol A, and diethyl phthalate, as well as three real-world mixtures of chemicals extracted from plastic food packaging covering all major polymer types. We found 11 GPCR-chemical interactions, of which the chemical mixtures exhibited the most robust activity at adenosine receptor 1 (ADORA1) and melatonin receptor 1 (MTNR1A). We further confirm that polyvinyl chloride and polyurethane products contain ADORA1 or MTNRA1 agonists using a confirmatory secondary screen and pharmacological knockdown experiments. Finally, an analysis of the associated gene ontology terms suggests that ADORA1 and MTNR1A activation may be linked to downstream effects on circadian and metabolic processes. This work highlights that signaling disruption caused by plastic chemicals is broader than that previously believed and demonstrates the relevance of nongenomic pathways, which have, thus far, remained unexplored.
Collapse
Affiliation(s)
- Molly McPartland
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Sarah Stevens
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Zdenka Bartosova
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Ingrid Gisnås Vardeberg
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | | | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
5
|
Ali HA, Ismail MA, Fouda AEAS, Ghaith EA. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: applications and biological aspects. RSC Adv 2023; 13:18262-18305. [PMID: 37333795 PMCID: PMC10274569 DOI: 10.1039/d3ra03531j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
This review provides recent developments in the current status and latest synthetic methodologies of biphenyl derivatives. Furthermore, this review investigates detailed discussions of several metalated chemical reactions related to biphenyl scaffolds such as Wurtz-Fittig, Ullmann, Bennett-Turner, Negishi, Kumada, Stille, Suzuki-Miyaura, Friedel-Crafts, cyanation, amination, and various electrophilic substitution reactions supported by their mechanistic pathways. Furthermore, the preconditions required for the existence of axial chirality in biaryl compounds are discussed. Furthermore, atropisomerism as a type of axial chirality in biphenyl molecules is discussed. Additionally, this review covers a wide range of biological and medicinal applications of the synthesized compounds involving patented approaches in the last decade corresponding to investigating the crucial role of the biphenyl structures in APIs.
Collapse
Affiliation(s)
- Hajar A Ali
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Mohamed A Ismail
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Abd El-Aziz S Fouda
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| |
Collapse
|
6
|
Zhang H, Kato D, Ihara MO, Jürgens MD, Johnson AC, Chen J, Tanaka H, Ihara M. Biological-Activity-Based Prioritization of Antidepressants in Wastewater in England and Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6444-6454. [PMID: 37022287 DOI: 10.1021/acs.est.2c08380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Antidepressants are one of the most commonly prescribed pharmaceuticals. Although they have been frequently detected in aquatic environments around the globe, little is known regarding their adverse effects on humans and aquatic organisms. Recently, an in vitro monoamine transporter inhibition assay was developed to detect transporter-inhibitory activities of antidepressants in wastewater in Japan. However, it was unclear which antidepressants were responsible for transporter-inhibitory activities in wastewater. Herein, the per capita consumption of 32 antidepressants, their excretion of unchanged parent compounds, per capita water consumption, removal rate during wastewater treatment processes, and potency values from the monoamine transporter inhibition assay were used to prioritize antidepressants of concern in effluent wastewater in England and Japan. In both countries, sertraline and O-desmethylvenlafaxine had the highest contribution to inhibitory activities against the human serotonin transporter (hSERT) and zebrafish SERT (zSERT), respectively. It was found that the antidepressants inhibited the zSERT more strongly than the hSERT. The inhibitory activities found against the zSERT in wastewater in England and Japan were higher than thresholds for abnormal behavior in fish. The antidepressants prioritized in this study provide insight into launching environmental monitoring and ecotoxicological studies of antidepressants.
Collapse
Affiliation(s)
- Han Zhang
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Daisuke Kato
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Mariko O Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Monika D Jürgens
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku City, Kochi 783-8502, Japan
| |
Collapse
|
7
|
Hanamoto S, Yamamoto-Ikemoto R, Tanaka H. Spatiotemporal distribution of veterinary and human drugs and its predictability in Japanese catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161514. [PMID: 36634780 DOI: 10.1016/j.scitotenv.2023.161514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Little is known about the predictability of mass flows of veterinary drugs in Asian catchments, where effluent from livestock farms is a major source. We therefore conducted this study to understand the applicability and limitations of a population-based emission model, which assumed usage of veterinary and human drugs to be evenly distributed over the national livestock or human population throughout the year, and sources to be effluent discharges at livestock farms, households, and sewage treatment plants in Japanese catchments. We monitored five veterinary drugs (lincomycin, sulfamonomethoxine, tiamulin, tylosin, and tilmicosin), two human and livestock drugs (sulfamethoxazole and trimethoprim), two human drugs (carbamazepine and clarithromycin), and a metabolite (sulfapyridine) of a human drug once a month over 2 years in eight Japanese rivers which have active livestock farming in their catchments. Mass flows of carbamazepine and sulfapyridine were stable, while those of veterinary drugs fluctuated widely, especially sulfamonomethoxine and tilmicosin, whose 25 %-100 % ranges averaged 1.5 and 1.2 log units, respectively, attributable mainly to their usage patterns. The model accurately predicted mean mass flows of carbamazepine in the rivers with errors of <±0.3 log unit. Although it slightly to moderately overestimated those of the other four human-related compounds, the incorporation of an empirical correction factor, determined to minimize mean absolute error (MAE) among the rivers, substantially lowered their MAEs to <0.23 log units. However, the MAEs of the five veterinary drugs were as high as 0.42 (sulfamonomethoxine) to 0.60 (tiamulin) log units even with the coefficient, likely due mainly to the spatial distribution of their usage per capita. So as not to overlook spatiotemporal elevation of risks of veterinary drugs, a stochastic method should be applied in their management. This is the first study to assess the use of spatiotemporal homogeneity in usage per capita of veterinary drugs in Asian catchments.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryoko Yamamoto-Ikemoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
8
|
Yi M, Lou J, Zhu W, Li D, Yu P, Lu H. Mechanism of β-blocker biodegradation by wastewater microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130338. [PMID: 36417780 DOI: 10.1016/j.jhazmat.2022.130338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The recalcitrant β-blockers have been widely detected in aquatic environments up to several hundred μg/L, which are major contributors to β1 antagonistic activities in wastewater. Their biodegradation mechanisms remain obscure, hindering the development of efficient removal techniques. This study constructed the biodegradation pathways for three typical β-blockers, namely atenolol, metoprolol, and propranolol, assessed the toxicity of their major biotransformation products, and identified the key enzyme catalyzing the O-dealkylation reaction leading to pollutant mineralization. Atenolol and metoprolol degradation was more efficient than that of propranolol by activated sludge, producing metoprolol acid (MTPA) as a major intermediate. Hydrogenophaga sp. YM1 isolated from activated sludge possess the α-ketoglutarate dependent dioxygenase (TfdA) responsible for O-dealkylation of MTPA and propranolol, producing 4-hydroxyphenylacetic acid (4-HPA) that can be further degraded and ultimately enters the TCA cycle. The role of TfdA was verified by proteomics, enzyme stimulation/inhibition tests, and gene knockout experiments. Molecular docking suggests its different interactions with MTPA and propranolol. Acetate facilitated the degradation of β-blockers efficiently. The results may shed light on enhanced biological removals of broader β-blockers and their transformation products in the environment.
Collapse
Affiliation(s)
- Ming Yi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China
| | - Jinxiu Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanlu Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Pingfeng Yu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Academy of Ecological Civilization, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
An Update on the Use of Molecularly Imprinted Polymers in Beta-Blocker Drug Analysis as a Selective Separation Method in Biological and Environmental Analysis. Molecules 2022; 27:molecules27092880. [PMID: 35566233 PMCID: PMC9104958 DOI: 10.3390/molecules27092880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-blockers are antihypertensive drugs and can be abused by athletes in some sport competitions; it is therefore necessary to monitor beta-blocker levels in biological samples. In addition, beta-blocker levels in environmental samples need to be monitored to determine whether there are contaminants from the activities of the pharmaceutical industry. Several extraction methods have been developed to separate beta-blocker drugs in a sample, one of which is molecularly imprinted polymer solid-phase extraction (MIP-SPE). MIPs have some advantages, including good selectivity, high affinity, ease of synthesis, and low cost. This review provides an overview of the polymerization methods for synthesizing MIPs of beta-blocker groups. The methods that are still widely used to synthesize MIPs for beta-blockers are the bulk polymerization method and the precipitation polymerization method. MIPs for beta-blockers still need further development, especially since many types of beta-blockers have not been used as templates in the MIP synthesis process and modification of the MIP sorbent is required, to obtain high throughput analysis.
Collapse
|
11
|
Yi M, Sheng Q, Lv Z, Lu H. Novel pathway and acetate-facilitated complete atenolol degradation by Hydrogenophaga sp. YM1 isolated from activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152218. [PMID: 34890665 DOI: 10.1016/j.scitotenv.2021.152218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Atenolol is a widely prescribed beta-blocker that has been detected in wastewater at concentrations up to 300 μg/L. The parent compound and its transformation products pose risks to aquatic organisms. Efficient atenolol degrading microorganism has yet to be identified, and its biodegradation pathway is unknown. In this study, Hydrogenophaga sp. YM1 isolated from activated sludge can degrade atenolol efficiently (286.1 ± 4.0 μg/g dry wt/h in actual wastewater), where atenolol acid, and four newly detected products (4-hydroxyphenylacetic acid, 3-(isopropylamino)-1,2-propanediol, 3-amino-1,2-propanediol and 4-(1-amino-2-hydroxy-3-propoxy) benzeneacetic acid) were the main intermediates. Key genes involved in atenolol degradation were proposed based on RNA-seq and validated by RT-qPCR. The ether bond cleavage of atenolol acid was the rate-limiting step likely catalyzed by the α-ketoglutarate dependent 2,4-dichlorophenoxyacetate dioxygenase. The further degradation of 4-hydroxyphenylacetic acid followed the homoprotocatechuate degradation pathway, enabling complete conversion to CO2. Acetate addition (39-156 mg COD/L) under aerobic condition enhanced atenolol degradation by 29-37% and decreased the accumulation of atenolol acid, likely because acetate oxidation provided α-ketoglutarate and additional reducing power. Activated sludge core microorganisms have limited atenolol mineralization potentials. Enriching Hydrogenophaga-like populations and/or providing such as acetate can drive more complete conversion of atenolol in natural and engineered biosystems.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lv
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Coors A, Falkenhain AM, Scheurer M, Länge R. Evidence for Specific Receptor-Mediated Toxicity of Pharmaceuticals in Aquatic Organisms Derived from Acute and Chronic Standard Endpoints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:601-613. [PMID: 33595135 DOI: 10.1002/etc.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of 17 active pharmaceutical ingredients (APIs) was investigated using standardized acute and chronic tests with Daphnia magna and 2 algae species. Chronic toxicity was generally greater for Daphnia than for algae. Compilation of additional data resulted in 100 APIs for which the acute-to-chronic ratio (ACR) was determined for Daphnia. The frequency of high ACRs (~20% with ACRs > 100) indicates that specific receptor-mediated toxicity toward D. magna is rather common among APIs. The 11 APIs with ACRs > 1000 included lipid-modifying agents, immunosuppressants, antibiotics, antineoplastics, antiobesics, antivirals, and antihistamines. There was no consistent association between ACR and chronic toxicity, ionization status, or lipophilicity. High ACRs were not exclusively associated with the presence of orthologs of the pharmacological target in Daphnia. Statins, acetylcholinesterase inhibitors, and antihistamines are discussed in more detail regarding the link between targets and toxic mode of action. For acetylcholinesterase inhibitors, receptor-mediated toxicity was already apparent after acute exposure, whereas the high ACR and chronic toxicity of some antihistamines probably related to interaction with a secondary rather than the primary pharmacological target. Acute or modeled chronic toxicity estimates have often been used for prioritizing pharmaceuticals. This may be seriously misleading because chronic effects are currently not predictable for APIs with specific receptor-mediated toxicity. However, it is exactly these APIs that are the most relevant in terms of environmental risks. Environ Toxicol Chem 2022;41:601-613. © 2021 SETAC.
Collapse
Affiliation(s)
- Anja Coors
- ECT Oekotoxikologie, Flörsheim/Main, Germany
- Environment Department, University of York, Heslington, York, UK
| | | | - Marco Scheurer
- Deutscher Verein des Gas- und Wasserfaches-Technologiezentrum Wasser, Karlsruhe, Germany
| | | |
Collapse
|
13
|
Ihara M, Zhang H, Ihara MO, Kato D, Tanaka H. Proposal for fluorescence-based in vitro assay using human and zebrafish monoamine transporters to detect biological activities of antidepressants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144665. [PMID: 33513512 DOI: 10.1016/j.scitotenv.2020.144665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Antidepressants are among the most commonly detected pharmaceuticals in the aquatic environment. As they modulate neurotransmission in nervous systems, behavioural abnormalities among aquatic species are of concern. It is possible to measure the concentrations of selected antidepressants by chemical analysis, but other non-target antidepressants and active metabolites might also be present. Here, we propose an "in vitro monoamine transporter inhibition assay" to measure the biological activity of antidepressants, particularly monoamine transporter inhibitors, in wastewater. We used APP, a fluorescent substrate for monoamine transporters, to measure the activity of wastewater extracts at inhibiting APP uptake through the human serotonin transporter (hSERT), norepinephrine transporter (hNET), and dopamine transporter, and the zebrafish SERT (zSERT). We confirmed that the assay could measure the biological activity of test antidepressants. Interestingly, the IC50 values of antidepressants (the concentration that gave a 50% reduction of APP uptake) for the zSERT were smaller than those for the hSERT. For example, IC50 value of desipramine for the zSERT was 1/200 of that for the hSERT. These results indicate that antidepressants inhibited zSERT more strongly than hSERT. Then we applied the assay to extracts of effluent from municipal wastewater treatment plants and detected biological activity of antidepressants specifically against the hSERT, hNET, and zSERT for the first time. For the hSERT, antidepressant-equivalent quantities (EQs) ranged from 2.2 × 101 to 2.5 × 102 ng-clomipramine-EQ/L. For the hNET, EQs ranged from below limit of detection to 8.2 × 101 ng-desipramine-EQ/L. For the zSERT, EQs ranged from 2.8 × 102 to 3.3 × 102 ng-duloxetine-EQ/L. The in vitro monoamine transporter inhibition assay is thus useful for measuring the biological activity of antidepressants in the aquatic environment.
Collapse
Affiliation(s)
- Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Han Zhang
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Mariko O Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Daisuke Kato
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
14
|
Yi M, Sheng Q, Sui Q, Lu H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115269. [PMID: 32836046 DOI: 10.1016/j.envpol.2020.115269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
β-blockers are a class of medications widely used to treat cardiovascular disorders, including abnormal heart rhythms, high blood pressure, and angina pectoris. The prevalence of β-blockers has generated a widespread concern on their potential chronic toxicity on aquatic organisms, highlighting the necessity of comprehensive studies on their environmental distribution, fate, and toxicity. This review summarizes the up-to-date knowledge on the source, global distribution, analytical methods, transformation, and toxicity of β-blockers. Twelve β-blockers have been detected in various environmental matrices, displaying significant temporal and spatial variations. β-blockers can be reduced by 0-99% at wastewater treatment plants, where secondary processes contribute to the majority of removal. Advanced oxidation processes, e.g., photocatalysis and combined UV/persulfate can transform β-blockers more rapidly and completely than conventional wastewater treatment processes, but the transformation products could be more toxic than the parent compounds. Propranolol, especially its (S)-enantiomer, exhibits the highest toxicity among all β-blockers. Future research towards improved detection methods, more efficient and cost-effective removal techniques, and more accurate toxicity assessment is needed to prioritize β-blockers for environmental monitoring and control worldwide.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VVT, Mokhtari B, Varma RS, Tay FR, Sillanpaa M. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. CHEMOSPHERE 2020; 258:127324. [PMID: 32544812 DOI: 10.1016/j.chemosphere.2020.127324] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Water is an extremely essential compound for human life and, hence, accessing drinking water is very important all over the world. Nowadays, due to the urbanization and industrialization, several noxious pollutants are discharged into water. Water pollution by various cytotoxic contaminants, e.g. heavy metal ions, drugs, pesticides, dyes, residues a drastic public health issue for human beings; hence, this topic has been receiving much attention for the specific approaches and technologies to remove hazardous contaminants from water and wastewater. In the current review, the cytotoxicity of different sorts of aquatic pollutants for mammalian is presented. In addition, we will overview the recent advances in various nanocomposite-based adsorbents and different approaches of pollutants removal from water/wastewater with several examples to provide a backdrop for future research.
Collapse
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University (B.H.U), Varasani 221005, India
| | | | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran; Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Xuan-Qi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic
| | - Babak Mokhtari
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA
| | - Mika Sillanpaa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
16
|
Zhang H, Lin Y, Men Z, Ihara M, Li W, He K. Evaluation of pharmaceutical activities of G-protein coupled receptor targeted pharmaceuticals in Chinese wastewater effluent. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Ihara M, Hanamoto S, Ihara MO, Zhang H, Tanaka H. Wastewater-derived antagonistic activities of G protein-coupled receptor-acting pharmaceuticals in river water. J Appl Toxicol 2020; 40:908-917. [PMID: 32077112 DOI: 10.1002/jat.3952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 11/11/2022]
Abstract
Pharmaceuticals are widely detected in aquatic environments, and their potential risks to aquatic species are of concern because they are designed to be biologically active. Here, we used an in vitro assay, called the transforming growth factor α shedding assay, to measure the biological activities of G protein-coupled receptor (GPCR)-acting pharmaceuticals present in river water and effluents from municipal wastewater treatment plants (WWTPs) in Japan from 2014 to 2016. Antagonistic activities against angiotensin (AT1), dopamine (D2), adrenergic (β1), acetylcholine (M1) and histamine (H1) receptors were detected in river water, and were stronger downstream than upstream owing to effluent from WWTPs along the river. Ozonation at one WWTP reduced these activities. Concentrations of sulpiride (D2 antagonist) could explain 73% of antagonistic activities against the D2 receptor; those of metoprolol, atenolol and propranolol (β1 antagonists) could explain 16% of activities against the β1 receptor; and those of pirenzepine (M1 antagonist) could explain 15% of activities against the M1 receptor. Therefore, other receptor antagonists also occur. GPCR-acting pharmaceuticals should be given more attention in environmental monitoring and toxicity testing.
Collapse
Affiliation(s)
- Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Shiga, Japan
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mariko O Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Shiga, Japan
| | - Han Zhang
- Research Center for Environmental Quality Management, Graduate School of Engineering, Shiga, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Shiga, Japan
| |
Collapse
|