1
|
Zheng Y, Xing Y, Li G, Gao J, Li R, Liu Q, Yue T. A comprehensive review of deactivation and modification of selective catalytic reaction catalysts installed in cement kilns. J Environ Sci (China) 2025; 148:451-467. [PMID: 39095179 DOI: 10.1016/j.jes.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/04/2024]
Abstract
After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.
Collapse
Affiliation(s)
- Yang Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Rui Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Qi Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China.
| |
Collapse
|
2
|
Abdul Nasir J, Beale AM, Catlow CRA. Understanding deNO x mechanisms in transition metal exchanged zeolites. Chem Soc Rev 2024. [PMID: 39440717 DOI: 10.1039/d3cs00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NOx species. To understand how transition metal ions (TMIs) can effect NOx reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH3-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity via structural modifications.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
| | - C Richard A Catlow
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Oxfordshire OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
3
|
Zhang J, Chen L, Xiao Y, Dai W, Yang L, Zhou L, Zou JP, Luo X, Jing G. Insight into the Alkali Resistance Mechanism of FeMoTiO x Catalysts for NH 3 Selective Catalytic Reduction of NO: Self-Defense Effects of MoO x for Alkali Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4145-4154. [PMID: 38381076 DOI: 10.1021/acs.est.3c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The deactivation of selective catalytic reduction (SCR) catalysts caused by alkali metal poisoning remains an insurmountable challenge. In this study, we examined the impact of Na poisoning on the performance of Fe and Mo co-doped TiO2 (FeaMobTiOx) catalysts in the SCR reaction and revealed the related alkali resistance mechanism. On the obtained Fe1Mo2.6TiOx catalyst, the synergistic catalytic effect of uniformly dispersed FeOx and MoOx species leads to remarkable catalytic activity, with over 90% NO conversion achieved in a wide temperature range of 210-410 °C. During the Na poisoning process, Na ions predominantly adsorb on the MoOx species, which exhibit stronger alkali resistance, effectively safeguarding the FeOx species. This preferential adsorption minimizes the negative effect of Na poisoning on Fe1Mo2.6TiOx. Moreover, Na poisoning has little influence on the Eley-Rideal reaction pathway involving adsorbed NHx reacting with gaseous NOx. After Na poisoning, the Lewis acid sites were deteriorated, while the abundant Brønsted acid sites ensured sufficient NHx adsorption. As a benefit from the self-defense effects of active MoOx species for alkali capture, FeaMobTiOx exhibits exceptional alkali resistance in the SCR reaction. This research provides valuable insights for the design of highly efficient and alkali-resistant SCR catalysts.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Liqiu Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Yuming Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China
| | - Guohua Jing
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
4
|
Sun P, Wang C, Zhang M, Cui L, Dong Y. Ash problems and prevention measures in power plants burning high alkali fuel: Brief review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165985. [PMID: 37536596 DOI: 10.1016/j.scitotenv.2023.165985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Large-scale utilization of high-alkali fuels is considered an effective solution for alleviating energy shortages and reducing CO2 emissions. However, combustion of high-alkali fuels in boilers releases alkali metals into the flue gas, which leads to severe ash deposition and corrosion on the heating surface. Consequently, research into the efficient use of highly alkaline fuels has been conducted in recent years. In this review, ash issues and measures for their prevention during high-alkali fuel combustion are summarized. First, the characteristics of fly ash produced from high-alkali fuel combustion are reviewed, and the form, migration, and deposition characteristics of alkali metals are summarized. Subsequently, research progress of high alkali fuel ash is introduced in detail. Mechanisms of slagging, fouling, corrosion on the heating surface and the selective catalytic reduction (SCR) unit deactivation are summarized. Prevention and control methods for the high-alkali fuel ash problem are then introduced. Finally, based on current research, existing problems and future development directions for high-alkali fuel research are proposed. Through this review, we hope to provide insights into the effective utilization of high-alkali fuels.
Collapse
Affiliation(s)
- Pengxiang Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chenglong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Miao Zhang
- Shandong provincial eco-environment monitoring center, Jinan, Shandong 250013, China
| | - Lin Cui
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Yong Dong
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
5
|
Lyu L, Ji Z, Yin H, Wang J, Yang W, Tan J, Hao L, Wang X, Wang H, Ge Y, Wang Y. NOx emission deterioration in modern heavy-duty diesel vehicles based on long-term real driving measurements. ENVIRONMENTAL RESEARCH 2023:116396. [PMID: 37327837 DOI: 10.1016/j.envres.2023.116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
NOx emissions from diesel vehicles generally deteriorate with increased durability mileage owing to the wear and deterioration of engines and after-treatment systems. Three China-VI heavy-duty diesel vehicles (HDDVs) were selected for four-phase long-term real driving emission (RDE) tests using the portable emission measurement system (PEMS). After 200,000 km of on-road driving, the maximum NOx emission factor of the test vehicles (387.06 mg/kWh) was found to be significantly lower than the NOx limit of 690 mg/kWh. Under all driving conditions, the NOx conversion efficiency of selected catalytic reduction (SCR) decreased almost linearly as the durability mileage increased. Importantly, the deterioration rate of the NOx conversion efficiency in low-temperature intervals was discernibly higher than that in high-temperature intervals. The NOx conversion efficiency at 200 °C dropped by 16.67-19.82% with higher durability mileage; however, the highest values at 275-400 °C only decreased by 4.11%. Interestingly, the SCR catalyst at 250 °C showed strong NOx conversion efficiency and durability (maximum decline of 2.11%). Overall, the poor de-NOx performance of SCR catalysts at low temperatures significantly challenges the long-term effective control of NOx emissions from HDDVs. Thus, improving the NOx conversion efficiency and durability at low-temperature intervals is the top priority for SCR catalyst optimization; NOx emissions from HDDVs at low velocities and loads should also be monitored by environmental authorities. The linear fitting coefficient for the NOx emission factors of the four-phase RDE tests was 0.90-0.92, indicating that NOx emissions deteriorated linearly with an increase in mileage. Based on the linear fitting results, the NOx emission control of the test vehicles during 700,000 km of on-road driving was highly likely to be qualified. These results can be used by environmental authorities to supervise the NOx emission conformity of in-use HDDVs after validation using other types of vehicles.
Collapse
Affiliation(s)
- Liqun Lyu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhongrui Ji
- Emission Regulation Office, Weichai Power Co., Ltd., Weifang, 261061, China
| | - Hang Yin
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjuan Yang
- Shandong Shengxiang Intelligent Manufacturing Co., Ltd., Weifang, 262100, China
| | - Jianwei Tan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lijun Hao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Huaiyu Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunshan Ge
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yachao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Zhang P, Chen A, Lan T, Qu W, Hu X, Zhang K, Zhang D. Revealing the Dynamic Behavior of Active Sites on Acid-Functionalized CeO 2 Catalysts for NO x Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314863 DOI: 10.1021/acs.langmuir.3c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the dynamics of the active sites upon CeO2-based catalysts in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR) is challenging. In this work, we prepared tungsten-acidified and sulfated CeO2 catalysts and used operando spectroscopy to reveal the dynamics of acid sites and redox sites on catalysts during NH3-SCR reaction. We found that both Lewis and Brønsted acid sites are needed to participate in the catalytic reaction. Notably, Brønsted acid sites are the main active sites after a tungsten-acidified or sulfated treatment, and the change of Brønsted acid sites significantly affects the NOx removal. Moreover, acid functionalization promotes the cerium species cycle between Ce4+ and Ce3+ for the NOx reduction. This work is critical to deeply understanding the natural properties of active sites, and it also provides new insights into the mechanism for NH3-SCR over CeO2-based catalysts.
Collapse
Affiliation(s)
- Pan Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Chen S, Xie R, Liu Z, Ma L, Yan N. Efficient NO x Reduction against Alkali Poisoning over a Self-Protection Armor by Fabricating Surface Ce 2(SO 4) 3 Species: Comparison to Commercial Vanadia Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2949-2957. [PMID: 36751011 DOI: 10.1021/acs.est.2c08570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Resolving severe deactivation by alkali metals for selective catalytic reduction of NOx with NH3 (NH3-SCR) is challenging. Herein, surface Ce2(SO4)3 species as a self-protection armor originally exhibited antipoisoning of potassium over ceria-based catalysts. The self-protection armor was also effective for other alkali (Na), alkali-earth (Ca), and heavy (Pb) metals, considerably resolving the deactivation of ceria-based SCR catalysts in practical applications. The catalytic activity tests indicated that the presence of ∼0.8 wt % potassium did not deactivate sulfated CeO2 catalysts, yet commercial V2O5-WO3/TiO2 catalysts almost lost the NOx conversions. Potassium preferably bonded with surface sulfates to form K2SO4 accompanied with the majority of surface Ce2(SO4)3 over sulfated CeO2 catalysts, but preferably coupled with active vanadia to generate inactive KVO3 species over V2O5-WO3/TiO2 catalysts. Such an active Ce2(SO4)3 species facilitated the adsorption and reactivity of NH3 and NOx, enabling ceria catalysts to maintain high catalytic efficiency in the presence of potassium. Conversely, the introduction of potassium into V2O5-WO3/TiO2 catalysts caused a considerable loss of surface acidity, hindering catalyst reactivity during the SCR reaction. The self-protection armor of Ce2(SO4)3 species may open a promising pathway to develop efficient ceria-based SCR catalysts with strong antipoisoning ability.
Collapse
Affiliation(s)
- Sijia Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Renyi Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Zhang P, Chen A, Lan T, Liu X, Yan T, Ren W, Zhang D. Balancing acid and redox sites of phosphorylated CeO 2 catalysts for NO x reduction: The promoting and inhibiting mechanism of phosphorus. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129867. [PMID: 36115091 DOI: 10.1016/j.jhazmat.2022.129867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The role of phosphorus in metal oxide catalysts is still controversial. The precise tuning of the acidic and redox properties of metal oxide catalysts for the selective catalytic reduction in NOx using NH3 is also a great challenge. Herein, CeO2 catalysts with different degrees of phosphorylation were used to study the balance between the acidity and redox property by promoting and inhibiting effects of phosphorus. CeO2 catalysts phosphorylated with lower phosphorus content (5 wt%) exhibited superior NOx reduction performance with above 90% NOx conversion during 240-420 °C due to the balanced acidity and reducibility derived from the highest content of Brønsted acid sites on PO43- to adsorb NH3 and surface adsorbed oxygen species. Plenty of PO3- over CeO2 catalysts phosphorylated with the higher phosphorus content (≥ 10 wt%) significantly disrupted the balance between the acidity and the redox property due to the reduced acid/redox sites, which resulted in the less active NOx species. The mechanism of different structural phosphorus species (PO43- and PO3-) in promoting or inhibiting the NOx reduction over CeO2 catalysts was revealed. This work provides a novel method for qualitative and quantitative study of the relationship between acidity/redox property and activity of catalysts for NOx reduction.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Aling Chen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Wei Ren
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Fan Y, Zhang J, Yang L, Lu M, Ying T, Deng B, Dai W, Luo X, Zou J, Luo S. Enhancing SO2-shielding effect and Lewis acid sites for high efficiency in low-temperature SCR of NO with NH3: Reinforced electron-deficient extent of Fe3+ enabled by Ti4+ in Fe2O3. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Song B, Zhi Z, Zhou Q, Wu D, Yu L, Gong F, Yin Y, Meng F, Li C, Chen Z, Song M. Enhanced arsenic removal by reusable hexagonal CeO 2/Fe 2O 3 nanosheets with exposed (0001) facet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157490. [PMID: 35870585 DOI: 10.1016/j.scitotenv.2022.157490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Arsenite in wastewater has caused increasing concern because of high toxicity and mobility. Iron oxides are widely available and regarded as effective adsorbents for arsenic. However, conventional iron oxides usually are only effective for arsenate (As(V)) adsorption by complexation, but not for As(III) adsorption because of their poor catalytic oxidation activities, which greatly limits arsenic removal efficiency. In this study, a uniform hexagonal FeCe bimetal oxide nanosheets (Fe0.21Ce0.29O) enclosed by high active (0001) planes was synthesized by a solvothermal method to improve the catalytic activity of Fe2O3. The experimental results showed that adsorption capacity of Fe0.21Ce0.29O reached 61.1 mg/g for arsenic and 70 % of that at equilibrium was achieved in <10 min. Based on characterization analyses and density functional theory simulation, the new insight in oxidation and complexation mechanism of arsenic was proposed. Firstly, As(III) was adsorbed to adsorbent surface by forming stable structure of Ce-O-As or Fe-O-As, and then converted into As(V) by dissolved oxygen under the catalysis of (0001) planes densely distributed on Fe2O3 and CeO2 surfaces. The formed As(V) species were bound on Fe0.21Ce0.29O surface by forming bidentate and monodentate surface complexes. Finally, the safety of As-containing solution treated with Fe0.21Ce0.29O was well proved by the zebrafish embryo developmental toxicity tests.
Collapse
Affiliation(s)
- Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zejian Zhi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qiang Zhou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; College of Materials, Xiamen University, Xiamen 361005, China
| | - Di Wu
- College of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Ying Yin
- College of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fanyue Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chengming Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
11
|
Zhang P, Wang P, Impeng S, Lan T, Liu X, Zhang D. Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO x Reduction Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12553-12562. [PMID: 35960931 DOI: 10.1021/acs.est.2c02255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective catalytic reduction (SCR) of NOx from the flue gas is still a grand challenge due to the easy deactivation of catalysts. The copoisoning mechanisms and multipoisoning-resistant strategies for SCR catalysts in the coexistence of heavy metals and phosphorus are barely explored. Herein, we unexpectedly found unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts and the introduction of heavy metals results in a dramatic recovery of NOx reduction activity for the P-poisoned CeO2/TiO2 catalysts. P preferentially combines with Ce as a phosphate species to reduce the redox capacity and inhibit NO adsorption. Heavy metals preferentially reduced the Brønsted acid sites of the catalyst and inhibited NH3 adsorption. It has been demonstrated that heavy metal phosphate species generated over the copoisoned catalyst, which boosted the activation of NH3 and NO, subsequently bringing about more active nitrate species to relieve the severe impact by phosphorus and maintain the NOx reduction over CeO2/TiO2 catalysts. The heavy metals and P copoisoned catalysts also possessed more acidic sites, redox sites, and surface adsorbed oxygen species, which thus contributed to the highly efficient NOx reduction. This work elaborates the unique compensation effects of heavy metals and phosphorus copoisoning over CeO2/TiO2 catalysts for NOx reduction and provides a perspective for further designing multipoisoning-resistant CeO2-based catalysts to efficiently control NOx emissions in stationary sources.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
12
|
Catalytic performance of calcined Fe2O3/CA catalyst for NH3-SCR reaction: Role of activation temperature. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Xu S, Yin L, Wang H, Gao L, Tian X, Chen J, Zhang Q, Ning P. Improved Alkali-Tolerance of FeOx-WO3 Catalyst for NO Removal via in situ Reserving FeOx Active Species. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wang Y, Xu W, Chen X, Li C, Xie J, Yang Y, Zhu T, Zhang C. Single-atom Ir 1 supported on rutile TiO 2 for excellent selective catalytic oxidation of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128670. [PMID: 35290894 DOI: 10.1016/j.jhazmat.2022.128670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Gaseous ammonia (NH3) in the atmosphere is potentially harmful to both human health and the environment. The selective catalytic oxidation of NH3 (termed as NH3-SCO) into N2 and H2O is a promising method for decreasing NH3 emissions. A highly efficient catalyst is required for controlling NH3 emissions by this method in practice. In this study, we prepared Ir/TiO2 catalysts using different crystal structures of TiO2 (rutile, P25 or anatase) as supports by a simple impregnation method and evaluated their performance in the NH3-SCO. We found that the Ir/TiO2-R (rutile) catalyst performed better than the Ir/TiO2-P25 (mixed-phase) and Ir/TiO2-A (anatase) catalyst. High-angle annular dark-field images of the aberration-corrected scanning transmission electron microscopy revealed that the Ir species were mainly atomically dispersed on the TiO2 support in Ir/TiO2-R with 1 wt% Ir loading, whereas the Ir species agglomerated to form clusters or nanoparticles in Ir/TiO2-P25 and Ir/TiO2-A. The combined results of X-ray absorption fine structure, H2-temperature-programmed reduction, and in situ diffuse reflectance for infrared Fourier Transform spectroscopy studies suggested that atomically dispersed Ir species had stronger electronic metal-support interaction with rutile TiO2, which resulted in easier to adsorb and activate O2 at the interface and thus, better low-temperature activity of the Ir/TiO2-R catalyst.
Collapse
Affiliation(s)
- Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Xie
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zhou J, Wang P, Chen A, Qu W, Zhao Y, Zhang D. NO x Reduction over Smart Catalysts with Self-Created Targeted Antipoisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6668-6677. [PMID: 35500206 DOI: 10.1021/acs.est.2c00758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of NOx in the presence of alkali (earth) metals and heavy metals is still a challenge due to the easy deactivation of catalysts. Herein, NOx reduction over smart catalysts with self-created targeted antipoisoning sites is originally demonstrated. The smart catalyst consisted of TiO2 pillared montmorillonite with abundant cation exchange sites to anchor poisoning substances and active components to catalyze NOx into N2. It was not deactivated during the NOx reduction process in the presence of alkali (earth) metals and heavy metals. The enhanced surface acidity, reducible active species, and active chemisorbed oxygen species of the smart catalyst accounted for the remarkable NOx reduction efficiency. More importantly, the self-created targeted antipoisoning sites expressed specific anchoring effects on poisoning substances and protected the active components from poisoning. It was demonstrated that the tetrahedrally coordinated aluminum species of the smart catalyst mainly acted as self-created targeted antipoisoning sites to stabilize the poisoning substances into the interlayers of montmorillonite. This work paves a new way for efficient reduction of NOx from the complex flue gas in practical applications.
Collapse
Affiliation(s)
- Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Qi X, Han L, Deng J, Lan T, Wang F, Shi L, Zhang D. SO 2-Tolerant Catalytic Reduction of NO x via Tailoring Electron Transfer between Surface Iron Sulfate and Subsurface Ceria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5840-5848. [PMID: 35446019 DOI: 10.1021/acs.est.2c00944] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Currently, SO2-induced catalyst deactivation from the sulfation of active sites turns to be an intractable issue for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Herein, SO2-tolerant NOx reduction has been originally demonstrated via tailoring the electron transfer between surface iron sulfate and subsurface ceria. Engineered from the atomic layer deposition followed by the pre-sulfation method, the structure of surface iron sulfate and subsurface ceria was successfully constructed on CeO2/TiO2 catalysts, which delivered improved SO2 resistance for NOx reduction at 250 °C. It was demonstrated that the surface iron sulfate inhibited the sulfation of subsurface Ce species, while the electron transfer from the surface Fe species to the subsurface Ce species was well retained. Such an innovative structure of surface iron sulfate and subsurface ceria notably improved the reactivity of NHx species, thus endowing the catalysts with a high NOx reaction efficiency in the presence of SO2. This work unraveled the specific structure effect of surface iron sulfate and subsurface ceria on SO2-toleant NOx reduction and supplied a new point to design SO2-tolerant catalysts by modulating the unique electron transfer between surface sulfate species and subsurface oxides.
Collapse
Affiliation(s)
- Xinran Qi
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Fuli Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Yu S, Niu X, Song Z, Huang X, Peng Y, Li J. Improvement of Al 2O 3 on the multi-pollutant control performance of NO x and chlorobenzene in vanadia-based catalysts. CHEMOSPHERE 2022; 289:133156. [PMID: 34864012 DOI: 10.1016/j.chemosphere.2021.133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
We compared the influences of Al2O3 and SiO2 on a traditional V2O5-MoO3/TiO2 for the simultaneous removal of NOx and chlorobenzene (CB). The Al2O3 doping catalyst considerably broadens the active temperature window with higher NOx reduction and CB oxidation efficiencies than the SiO2 doping one and the V2O5-MoO3/TiO2. Furthermore, its resistance to SO2 was preserved and the quantities of polychlorinated byproducts also decreased. The increase in activity at low temperatures could be due to the promotion of vanadia reducibility via interactions between V2O5 and Al2O3. Moreover, the high temperature activity could be due to the additional surface acidities provided by Al2O3, in which the Lewis acid sites played the predominant role in both NH3 adsorptions and CB de-chlorination compared to the Brønsted acid sites. Finally, we proposed that Al2O3 is an effective addition for vanadia-based catalyst in NOx and CB simultaneous removal from stationary sources.
Collapse
Affiliation(s)
- Shixuan Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaowei Niu
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, Shenyang University, Shenyang, 110044, China.
| | - Zijian Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xu Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
19
|
Gao E, Feng W, Huang B, Zhu J, Wang W, Li J, He Y. The enhanced resistance to Na+-poisoning of MnCoCrOx SCR catalyst by acidity regulation: The mechanism of sulfuric acid pretreatment. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Mu J, Liu J, Qin J, Li X, Liu B. Unveiling remarkable resistance to Pb poisoning over an Fe–Mo catalyst for low-temperature NH 3-SCR: poison transforms into a promoter. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heavy metal-resistant NOx catalytic reduction Fe–Mo catalyst was developed and a novel intrinsic activity enhancement mechanism by Pb species was originally demonstrated.
Collapse
Affiliation(s)
- Jincheng Mu
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Jie Liu
- Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071003, China
| | - Jiangzhou Qin
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
21
|
Eid A, Rahman MA, Al-Abadleh HA. Mechanistic studies on the conversion of NO gas on urea-iron and copper metal organic frameworks at low temperature conditions: in situ infrared spectroscopy and Monte Carlo investigations. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen oxide (NOx) emissions from high-temperature combustion processes under fuel-lean conditions continue to be a challenge for the energy industry. Selective catalytic reduction (SCR) is possible using metal oxides and zeolites. There is still a need to identify catalytic materials that are efficient in reducing NOx to environmentally benign nitrogen gas at temperatures lower than 200 °C. Metal-organic frameworks (MOFs) have emerged as a class of highly porous materials with unique physical and chemical properties. This study is motivated by the lack of systematic investigations on SCR using MOFs under industrially relevant conditions. Here, we investigate the extent of NO conversion with two commercially available MOFs, Basolite F300 (Fe-BTC) and HKUST-1 (Cu-BTC), mixed with solid urea as a source for the reductant, ammonia gas. For comparison, experiments were also conducted using cobalt ferrite (CoFe2O4) as a non-porous counterpart to relate its reactivity to those obtained from MOFs. Fourier-transform infrared spectroscopy (FTIR) was utilized to identify the gas and surface species in the temperature range of 115–180 °C. Computational analysis was performed using Monte Carlo simulations to quantify the adsorption energies of different surface species. The results show that the rate of ammonia production from the in situ solid urea decomposition was higher using CoFe2O4 than Fe-BTC and Cu-BTC and that there was very limited conversion of NO on the mixed solid urea-MOF systems due to site blocking. The main conclusions from this study are that MOFs have limited ability to convert NO under low-temperature conditions and that surface regeneration requires additional experimental steps.
Collapse
Affiliation(s)
- A.M. Eid
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Mohammad A. Rahman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Hind A. Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
22
|
Zhang P, Wang P, Chen A, Han L, Yan T, Zhang J, Zhang D. Alkali-Resistant Catalytic Reduction of NO x by Using Ce-O-B Alkali-Capture Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11970-11978. [PMID: 34488354 DOI: 10.1021/acs.est.1c02882] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reducing the poisoning effect arising from alkali metals over catalysts for selective catalytic reduction (SCR) of NOx by NH3 is still an urgent issue to be solved. Herein, alkali-resistant NOx reduction over B-doped CeO2/TiO2 catalysts (Ce-B/TiO2) with Ce-O-B alkali-capture sites was originally demonstrated. It was noted that boron was confirmed to be doped into the lattice of CeO2 to form the Ce-O-B structure. In this way, more active Ce(III) species and oxygen vacancies were generated from B-doped CeO2, thus accelerating the redox cycle and enhancing the adsorption/activation of NO. Gratifyingly, the created Ce-O-B sites as alkali-capture sites could be effectively combined with K and release the poisoned Ce active sites, which maintained efficient NH3 and NO adsorption/activation over K poisoned Ce-B/TiO2. This work paves a way for designing highly efficient and alkali-resistant SCR catalysts in both academic and industrial fields.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
23
|
Feng C, Wang P, Liu X, Wang F, Yan T, Zhang J, Zhou G, Zhang D. Alkali-Resistant Catalytic Reduction of NO x via Naturally Coupling Active and Poisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11255-11264. [PMID: 34323076 DOI: 10.1021/acs.est.1c02061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Releasing the poisoning effect of alkali metals over catalysts is still an intractable issue for selective catalytic reduction (SCR) of NOx with ammonia. The presence of K in fly ash always dramatically suppressed catalytic activity by impairing acidity and redox properties, leading to severe reduction of lifetime for SCR catalysts. Herein, alkali-resistant NOx reduction over TiO2-supported Fe2(SO4)3 catalysts was originally demonstrated via naturally coupling active and poisoning sites. Notably, TiO2-supported Fe2(SO4)3 catalysts expressed admirable NOx conversion and K resistance within a quite broad temperature window of 200-500 °C. The catalysts with more conserved sulfate species revealed that sulfate groups preferred to migrate from the bulk phase to surface, thus effectively binding with K poisons to release the damage on iron active sites. Because of protection effects of migrated sulfates and closely coupling effects with Fe active sites, NH3 and NO adsorption amounts and rates were well maintained. In this way, Fe metal sites and sulfate species closely coupled together on a self-preserved TiO2-supported Fe2(SO4)3 catalyst played essential roles as highly active sites and unique poisoning sites. This work paves a new way to design SCR catalysts with superior alkali resistance that are more reliable in practical deNOx application.
Collapse
Affiliation(s)
- Chong Feng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Fuli Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Improvement on the Catalytic Performance of MoO3 Nanobelts for NH3-SCR Reaction by SnO2-Modification: Enhancement of Acidity and Redox Property. Catal Letters 2021. [DOI: 10.1007/s10562-021-03653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Abstract
Iron-based oxide catalysts for the NH3–SCR (selective catalytic reduction of NOx by NH3) reaction have gained attention due to their high catalytic activity and structural adjustability. In this work, iron–niobium, iron–titanate and iron–molybdenum composite oxides were synthesized by a co-precipitation method with or without the assistance of hexadecyl trimethyl ammonium bromide (CTAB). The catalysts synthesized with the assistance of CTAB (FeM0.3Ox-C, M = Nb, Ti, Mo) showed superior SCR performance in an operating temperature range from 150 °C to 400 °C compared to those without CTAB addition (FeM0.3Ox, M = Nb, Ti, Mo). To reveal such enhancement, the catalysts were characterized by N2-physisorption, XRD (Powder X-ray diffraction), NH3-TPD (temperature-programmed desorption of ammonia), DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), and H2-TPR (H2-Total Physical Response). It was found that the crystalline phase of Fe2O3 formed was influenced by the presence of CTAB in the preparation process, which favored the formation of crystalline γ-Fe2O3. Owing to the changed structure, the redox-acid properties of FeM0.3Ox-C catalysts were modified, with higher exposure of acid sites and improved ability of NO oxidation to NO2 at low-temperature, both of which also contributed to the improvement of NOx conversion. In addition, the weakened redox ability of Fe prevented the over-oxidation of NH3, thus accounting for the greatly improved high-temperature activity as well as N2 selectivity.
Collapse
|
26
|
Abstract
SCR still represents the most widely applied technique to remove nitrogen oxides from flue gas from both stationary and mobile sources. The catalyst lifetime is greatly affected by the presence of poisoning compounds in the exhaust gas that deactivate the catalysts over time on stream. The progressive and widespread transition towards bio-derived fuels is pushing research efforts to deeply understand and contrast the deactivating effects of some specific poisons among those commonly found in the emissions from combustion processes. In particular, exhaust gases from the combustion of bio-fuels, as well as from municipal waste incineration plants and marine engines, contain large amounts of alkali and alkaline earth metals that can severely affect the acid, redox, and physical properties of the SCR catalysts. This review analyzes recent studies on the effects of alkali and alkaline earth metals on different types of SCR catalysts divided into three main categories (conventional V2O5-WO3/TiO2, supported non-vanadium catalysts and zeolite-based catalysts) specifically focusing on the impact of poisons on the reaction mechanism while highlighting the different type of deactivation affecting each group of catalysts. An overview of the different regeneration techniques aimed at recovering as much as possible the original performance of the catalysts, highlighting the pros and cons, is given. Finally, current research trends aiming to improve the tolerance towards alkali-poisoning of SCR catalysts are reported.
Collapse
|
27
|
Xu D, Wu W, Wang P, Deng J, Yan T, Zhang D. Boosting the Alkali/Heavy Metal Poisoning Resistance for NO Removal by Using Iron-Titanium Pillared Montmorillonite Catalysts. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122947. [PMID: 32521318 DOI: 10.1016/j.jhazmat.2020.122947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
It is still a big challge to improve the alkali and heavy metal resistance of deNOx catalysts for selective catalytic reduction (SCR) of NOx with NH3. In this study, a novel catalyst developed by pillaring montmorillonite with iron and titanium (Fe-Ti-MMT) was proposed. It is quite interesting that high resistance to alkaline and heavy metals has been demonstrated by using Fe-Ti-MMT catalysts. It has been demonstrated that the specific pillaring synthesis procedure and further addition of the Ti pillared sites greatly contributed to the wide active temperature window and enhanced the resistance to alkali and heavy metal. The higher ratio of active Fe2+ species, more active acid sites, and enhanced ammonia adsorption indicated the remarkable activity as well as K and Pb resistance. Moreover, the K and Pb poisons would promote the generation of active adsorbed NOx species on the Fe-Ti-MMT but induce the formation of stable inactive ones on that of Fe-MMT, which greatly tuned the reaction pathways and improved the reaction rate for Ti modified Fe pillared MMT catalysts. The strategy of incorporating Ti into the Fe pillared MMT catalysts strongly provides a novel inspiration for keeping excellent NH3-SCR performance in the presence of alkali/heavy metal for NOx removal.
Collapse
Affiliation(s)
- Dong Xu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Ma'anshan, 243002, China
| | - Wenhao Wu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Ma'anshan, 243002, China; Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Penglu Wang
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jiang Deng
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Tingting Yan
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Dengsong Zhang
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
28
|
Du Y, Huang Z, Zhang J, Jing G. Fe 2O 3/HY Catalyst: A Microporous Material with Zeolite-Type Framework Achieving Highly Improved Alkali Poisoning-Resistant Performance for Selective Reduction of NO x with NH 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7078-7087. [PMID: 32407624 DOI: 10.1021/acs.est.0c00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The commercially available V2O5/WO3-TiO2 is a well-known catalyst for selective catalytic reduction (SCR) of NO with NH3. When alkali ions are present in the exhaust (e.g., as impurities such as dust) of a reactor containing commercial V2O5/WO3-TiO2, alkali poisoning occurs, deactivating the catalyst. Consequently, there is substantial interest in the development of better-performing and more durable NH3-SCR catalysts with an improved resistance to alkali deactivation. For the present study, the protonated (H+) form of zeolite Y, HY, was used as a support and acted as buffer zone, leading to trapping (sticking) of foreign alkali poisons in the zeolite pore structure, preventing alkali poisoning of the Fe2O3/HY catalyst. Catalytic tests showed that the Fe2O3/HY retained 100% of its original catalytic reactivity for NH3-SCR reaction even after 1000 μmol Na+ g-1 poisoning. 1000 μmol Na+ g-1 treatment indicates a 26 000-h exposure under an alkaline dust-containing condition. In contrast, upon 1000 μmol Na+ g-1 treatment, severe alkali deactivation occurred for a commercial V2O5/WO3-TiO2. The catalyst activity of Fe2O3/HY remained unchanged because of the intercalation of Na+ in the internal HY zeolite pores that impedes the blocking of Na+ poison to the external active sites of Fe2O3. The findings in this work suggest that the zeolite HY may be revealed as an attractive building block for designing an alkali poisoning-resistant catalyst.
Collapse
Affiliation(s)
- Yueyao Du
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhiwei Huang
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jie Zhang
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Guohua Jing
- Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|