1
|
Liu W, Zhang Z, Li W, Zhang Y, Ren Z, Li X, Wu Y, Li J, Zhu W, Ma Z, Zhou Y, Li W. Chloride accumulation in inland rivers of China and its toxic impact on cotton. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123122. [PMID: 39488955 DOI: 10.1016/j.jenvman.2024.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The escalation of major ion concentrations in freshwater and soil poses diverse effects on ecosystems and the environment. Excessive ions can exhibit toxicity to aquatic organisms and terrestrial plants. Currently, research on ion toxicity primarily focuses on cation toxicity. Notably, there is a noticeable research gap in understanding the impact of chloride ion (Cl-) on plant growth and development, as well as on the defense mechanisms against Cl- toxicity. In the present study, sampling was conducted on major rivers in China to measure Cl- concentrations. The results revealed that certain rivers exhibited excessive levels of Cl-, emphasizing the critical need to address Cl- toxicity issues. Subsequently, when salt-tolerant cotton seedlings were subjected to various chloride treatments, it was observed that excessive Cl- severely hindered plant growth and development. A combined analysis of transcriptomic and metabolomic data shed light on significantly enriched pathways related to galactose metabolism, arginine and proline metabolism, carotenoid metabolism, and alpha-linolenic acid metabolism under chloride stress. In summary, this research provides a scientific foundation and references for environmental management and water resource protection and offers novel insights for mitigating the adverse impacts of Cl-, thereby contributing to the preservation of ecosystem health.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenhao Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuchen Wu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianing Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yang Zhou
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, China.
| | - Wei Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
2
|
Sun X, Arnott SE, Little AG. Impacts of sequential salinity and heat stress are recovery time-specific in freshwater crustacean, Daphnia pulicaria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115899. [PMID: 38171229 DOI: 10.1016/j.ecoenv.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Stressors can interact to affect animal fitness, but we have limited knowledge about how temporal variation in stressors may impact their combined effect. This limits our ability to predict the outcomes of pollutants and future dynamic environmental changes. Elevated salinity in freshwater ecosystems has been observed worldwide. Meanwhile, heatwaves have become more frequent and intensified as an outcome of climate change. These two stressors can jointly affect organisms; however, their interaction has rarely been explored in the context of freshwater ecosystems. We conducted lab experiments using Daphnia pulicaria, a key species in lakes, to investigate how elevated salinity and heatwave conditions collectively affect freshwater organisms. We also monitored the impacts of various recovery times between the two stressors. Daphnia physiological conditions (metabolic rate, Na+-K+-ATPase (NKA) activity, and lipid peroxidation level) and life history traits (survival, fecundity, and growth) in response to salt stress as well as mortality in heat treatment were examined. We found that Daphnia responded to elevated salinity by upregulating NKA activity and increasing metabolic rate, causing a high lipid peroxidation level. Survival, fecundity, and growth were all negatively affected by this stressor. These impacts on physiological conditions and life history traits persisted for a few days after the end of the exposure. Heat treatments caused mortality in Daphnia, which increased with rising temperature. Results also showed that individuals that experienced salt exposure were more susceptible to subsequent heat stress, but this effect decreased with increasing recovery time between stressors. Findings from this work suggest that the legacy effects from a previous stressor can reduce individual resistance to a subsequent stressor, adding great difficulties to the prediction of outcomes of multiple stressors. Our work also demonstrates that cross-tolerance/susceptibility and the associated mechanisms remain unclear, necessitating further investigation.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Shelley E Arnott
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Alexander G Little
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 ON, Canada
| |
Collapse
|
3
|
Foley E, Steinman AD. Urban lake water quality responses to elevated road salt concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167139. [PMID: 37739074 DOI: 10.1016/j.scitotenv.2023.167139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Road salt runoff from de-icing applications is increasingly impacting water quality around the globe. Excess salt (especially chloride) concentrations can negatively impact the biological, chemical, and physical properties of freshwater ecosystems. Though road salt pollution is a prevalent issue affecting many northern temperate lakes, there are few studies on how freshwater salinization interacts with other ecological stressors such as eutrophication. We investigated how chloride from road deicers influences water quality in an urban lake. We sampled a tributary and lake receiving large amounts of road salt runoff from a nearby highway in Grand Rapids, Michigan over a 20-month period. Chloride concentrations in the deepest part of the lake consistently exceeded the US EPA chloride chronic toxicity threshold of 230 mg/L, at times reaching up to 331 mg/L. These high chloride concentrations appear to be responsible for preventing part of the lake from complete mixing, and causing hypoxia in the deepest regions of the lake. Total phosphorus concentrations near the surface averaged 35 μg/L but exceeded 7500 μg/L in the deepest part of the lake, which occupies 3-5 % of total lake volume. Phosphorus release rates from the sediments were low and unlikely to be a current source of the high phosphorus concentrations. Rather, both phosphorus and chloride likely have been accumulating in the hypolimnion over a relatively long period of time. Lake management actions will require control of both internal and external phosphorus and chloride sources in the future. We recommend that phosphorus be addressed first to avoid the extremely high phosphorus concentrations from reaching the photic zone and stimulating algal blooms, which would occur if salt was removed first and the halocline broke down. Our findings and recommendations are applicable to other lakes facing similar issues.
Collapse
Affiliation(s)
- Ellen Foley
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA.
| |
Collapse
|
4
|
Garner RE, Kraemer SA, Onana VE, Fradette M, Varin MP, Huot Y, Walsh DA. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol 2023; 8:1920-1934. [PMID: 37524802 DOI: 10.1038/s41564-023-01435-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Lakes are heterogeneous ecosystems inhabited by a rich microbiome whose genomic diversity is poorly defined. We present a continental-scale study of metagenomes representing 6.5 million km2 of the most lake-rich landscape on Earth. Analysis of 308 Canadian lakes resulted in a metagenome-assembled genome (MAG) catalogue of 1,008 mostly novel bacterial genomospecies. Lake trophic state was a leading driver of taxonomic and functional diversity among MAG assemblages, reflecting the responses of communities profiled by 16S rRNA amplicons and gene-centric metagenomics. Coupling the MAG catalogue with watershed geomatics revealed terrestrial influences of soils and land use on assemblages. Agriculture and human population density were drivers of turnover, indicating detectable anthropogenic imprints on lake bacteria at the continental scale. The sensitivity of bacterial assemblages to human impact reinforces lakes as sentinels of environmental change. Overall, the LakePulse MAG catalogue greatly expands the freshwater genomic landscape, advancing an integrative view of diversity across Earth's microbiomes.
Collapse
Affiliation(s)
- Rebecca E Garner
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
| | | | - Vera E Onana
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
| | - Maxime Fradette
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Pierre Varin
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yannick Huot
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada.
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Farnan J, Vanden Heuvel JP, Dorman FL, Warner NR, Burgos WD. Toxicity and chemical composition of commercial road palliatives versus oil and gas produced waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122184. [PMID: 37453689 DOI: 10.1016/j.envpol.2023.122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Across the United States, road palliatives are applied to roads for maintenance operations that improve road safety. In the winter, solid rock salts and brine solutions are used to reduce the accumulation of snow and ice, while in the summer, dust suppressants are used to minimize fugitive dust emissions. Many of these products are chloride-based salts that have been linked to freshwater salinization, toxicity to aquatic organisms, and damage to infrastructure. To minimize these impacts, organic products have been gaining attention, though their widespread adoption has been limited due to their higher cost. In some states, using produced water from conventionally drilled oil and gas wells (OGPWs) on roads is permitted as a cost-effective alternative to commercial products, despite its typically elevated concentrations of heavy metals, radioactivity, and organic micropollutants. In this study, 17 road palliatives used for winter and summer road maintenance were collected and their chemical composition and potential human toxicity were characterized. Results from this study demonstrated that liquid brine solutions had elevated levels of trace metals (Zn, Cu, Sr, Li) that could pose risks to human and environmental health. The radium activity of liquid calcium chloride products was comparable to the activity of OGPWs and could be a significant source of radium to the environment. The organic fractions of evaluated OGPWs and chloride-based products posed little risk to human health. However, organic-based dust suppressants regulated toxicity pathways related to xenobiotic metabolism, lipid metabolism, endocrine disruption, and oxidative stress, indicating their use could lead to environmental harm and health risks to operators handing these products and residents living near treated roads.
Collapse
Affiliation(s)
- James Farnan
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA ,16802, USA; INDIGO Biosciences, Inc., 3006 Research Drive, Suite A1, PA, 16801, USA.
| | - Frank L Dorman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA ,16802, USA.
| | - Nathaniel R Warner
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - William D Burgos
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Yang Y, Zhang N, You Q, Chen X, Zhang Y, Zhu L. Novel insights into the multistep chlorination of silver nanoparticles in aquatic environments. WATER RESEARCH 2023; 240:120111. [PMID: 37263118 DOI: 10.1016/j.watres.2023.120111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Due to the increasing applications, silver nanoparticles (AgNPs) are inevitably released into the environments and are subjected to various transformations. Chloride ion (Cl-) is a common and abundant anion with a wide range of concentration in aquatic environments and exhibits a strong affinity for silver. The results indicate that AgNPs experienced multistep chlorination, which was dependent on the concentration of Cl- in a non-linear manner. The dissolution of AgNPs was accelerated at Cl/Ag ratio of 1 and the intensive etching effect of Cl- contributed to the significant morphology changes of AgNPs. The dissolved Ag+ quickly precipitated with Cl- to form an amorphous and passivating AgCl(s) layer on the surface of AgNPs, thus the dissolution rate of AgNPs decreased at higher Cl/Ag ratios (100 and 1000). As the Cl/Ag ratio further increased to 10,000, the overall transformation rate increased remarkably due to the complexation of Cl- with AgCl(s) to form soluble AgClx(x-1)- species, which was verified by the reaction of AgCl nanoparticles with Cl-. Besides, several environmental factors (electrolytes, surfactants and natural organic matter) affected AgNPs dissolution and the following chlorination. These results will expand the understanding of the environmental fate and potential risks of AgNPs in natural chloride-rich waters.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi You
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Kaushal SS, Mayer PM, Likens GE, Reimer JE, Maas CM, Rippy MA, Grant SB, Hart I, Utz RM, Shatkay RR, Wessel BM, Maietta CE, Pace ML, Duan S, Boger WL, Yaculak AM, Galella JG, Wood KL, Morel CJ, Nguyen W, Querubin SEC, Sukert RA, Lowien A, Houde AW, Roussel A, Houston AJ, Cacopardo A, Ho C, Talbot-Wendlandt H, Widmer JM, Slagle J, Bader JA, Chong JH, Wollney J, Kim J, Shepherd L, Wilfong MT, Houlihan M, Sedghi N, Butcher R, Chaudhary S, Becker WD. Five state factors control progressive stages of freshwater salinization syndrome. LIMNOLOGY AND OCEANOGRAPHY LETTERS 2023; 8:190-211. [PMID: 37539375 PMCID: PMC10395323 DOI: 10.1002/lol2.10248] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/21/2022] [Indexed: 08/05/2023]
Abstract
Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Paul M. Mayer
- Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, Oregon
| | - Gene E. Likens
- Cary Institute of Ecosystem Studies, Millbrook, New York
- University of Connecticut, Storrs, Connecticut
| | - Jenna E. Reimer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Carly M. Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, Virginia
- Center for Coastal Studies, Virginia Tech, Blacksburg, Virginia
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, Virginia
- Center for Coastal Studies, Virginia Tech, Blacksburg, Virginia
| | - Ian Hart
- Chatham University, Gibsonia, Pennsylvania
| | | | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Barret M. Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Christine E. Maietta
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Michael L. Pace
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
| | - Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Walter L. Boger
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Alexis M. Yaculak
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Joseph G. Galella
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Kelsey L. Wood
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Carol J. Morel
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - William Nguyen
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Shane Elizabeth C. Querubin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Rebecca A. Sukert
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Anna Lowien
- Environmental Science & Policy Program, University of Maryland, College Park, Maryland
| | - Alyssa Wellman Houde
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Anaïs Roussel
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Andrew J. Houston
- Department of Geology, University of Maryland, College Park, Maryland
| | - Ari Cacopardo
- Department of Geology, University of Maryland, College Park, Maryland
| | - Cristy Ho
- Department of Geology, University of Maryland, College Park, Maryland
| | | | - Jacob M. Widmer
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jairus Slagle
- Department of Geology, University of Maryland, College Park, Maryland
| | - James A. Bader
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jeng Hann Chong
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jenna Wollney
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jordan Kim
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Lauren Shepherd
- Department of Geology, University of Maryland, College Park, Maryland
| | - Matthew T. Wilfong
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Megan Houlihan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Nathan Sedghi
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Rebecca Butcher
- Department of Geology, University of Maryland, College Park, Maryland
| | - Sona Chaudhary
- Department of Geology, University of Maryland, College Park, Maryland
| | - William D. Becker
- Department of Geology, University of Maryland, College Park, Maryland
| |
Collapse
|
8
|
Osburn FS, Wagner ND, Taylor RB, Chambliss CK, Brooks BW, Scott JT. The effects of salinity and N:P on N-rich toxins by both an N-fixing and non-N-fixing cyanobacteria. LIMNOLOGY AND OCEANOGRAPHY LETTERS 2023; 8:162-172. [PMID: 36777312 PMCID: PMC9915339 DOI: 10.1002/lol2.10234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/08/2021] [Indexed: 06/18/2023]
Abstract
Freshwater ecosystems are experiencing increased salinization. Adaptive management of harmful algal blooms (HABs) contribute to eutrophication/salinization interactions through the hydrologic transport of blooms to coastal environments. We examined how nutrients and salinity interact to affect growth, elemental composition, and cyanotoxin production/release in two common HAB genera. Microcystis aeruginosa (non-nitrogen (N)-fixer and microcystin-LR producer; MC-LR) and Aphanizomenon flos-aquae (N-fixer and cylindrospermopsin producer; CYN) were grown in N:phosphorus (N:P) 4 and 50 (by atom) for 21 and 33 days, respectively, then dosed with a salinity gradient (0 - 10.5 g L-1). Both total MC-LR and CYN were correlated with particulate N. We found Microcystis MC-LR production and release was affected by salinity only in the N:P 50 treatment. However, Aphanizomenon CYN production and release was affected by salinity regardless of N availability. Our results highlight how cyanotoxin production and release across the freshwater - marine continuum are controlled by eco-physiological differences between N-acquisition traits.
Collapse
Affiliation(s)
- Felicia S. Osburn
- Department of Biology, Baylor University, Waco TX USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
| | - Nicole D. Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
| | - Raegyn B. Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco TX USA
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
- Department of Chemistry and Biochemistry, Baylor University, Waco TX USA
- The Institute for Ecological, Earth, and Environmental Sciences, Baylor University, Waco TX USA
| | - Bryan W. Brooks
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
- The Institute for Ecological, Earth, and Environmental Sciences, Baylor University, Waco TX USA
- Department of Environmental Science, Baylor University, Waco TX USA
- Institute of Biomedical Studies, Baylor University, Waco TX USA
| | - J. Thad Scott
- Department of Biology, Baylor University, Waco TX USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco TX USA
- The Institute for Ecological, Earth, and Environmental Sciences, Baylor University, Waco TX USA
| |
Collapse
|
9
|
Rossi ML, Kremer P, Cravotta CA, Scheirer KE, Goldsmith ST. Long-term impacts of impervious surface cover change and roadway deicing agent application on chloride concentrations in exurban and suburban watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157933. [PMID: 35987233 DOI: 10.1016/j.scitotenv.2022.157933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Roadway deicing agents, including rock salt and brine containing NaCl, have had a profound impact on the water quality and aquatic health of rivers and streams in urbanized areas with temperate climates. Yet, few studies evaluate impacts to watersheds characterized by relatively low impervious surface cover (ISC; < 15 %). Here, we use long-term (1997-2019), monthly streamwater quality data combined with daily streamflow for six exurban and suburban watersheds in southeastern Pennsylvania to examine the relations among chloride (Cl-) concentrations and ISC. Both flow-normalized Cl- concentrations and ISC increased over time in each of the six watersheds, consistent with changes in watershed management (e.g., ISC, road salt application, etc.). The watersheds that experienced the greatest changes in percent ISC (e.g., agriculture replaced by residential and commercial development) experienced the greatest changes in flow-normalized Cl- concentrations. We also utilized a comprehensive mass-balance model (2011-2018) that indicated Cl- inputs exceeded the outputs for the study watersheds. Road salt applied to state roads, non-state roads, and other impervious surfaces accounted for the majority of Cl- inputs to the six watersheds. Furthermore, increasing Cl- concentrations during baseflow conditions confirm impacts to shallow groundwater. Although flow-normalized Cl- concentrations are below the U.S. Environmental Protection Agency's chronic threshold value for impacts to aquatic organisms, year-round exceedances may result before the end of this century based on current trends. Though reduced Cl- loading to streams may be achieved by limiting the expansion of impervious surfaces in exurban and suburban watersheds, changes in baseflow concentrations are likely to be gradual because of the accumulated Cl- in groundwater.
Collapse
Affiliation(s)
- Marissa L Rossi
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Peleg Kremer
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Charles A Cravotta
- U.S. Geological Survey, Pennsylvania Water Science Center, 215 Limekiln Road, New Cumberland, PA 17070, United States of America
| | - Krista E Scheirer
- Aqua Pennsylvania, Inc., 762 W. Lancaster Ave, Bryn Mawr, PA 19010, United States of America
| | - Steven T Goldsmith
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America.
| |
Collapse
|
10
|
Protist Diversity and Metabolic Strategy in Freshwater Lakes Are Shaped by Trophic State and Watershed Land Use on a Continental Scale. mSystems 2022; 7:e0031622. [PMID: 35730947 PMCID: PMC9426515 DOI: 10.1128/msystems.00316-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protists play key roles in aquatic food webs as primary producers, predators, nutrient recyclers, and symbionts. However, a comprehensive view of protist diversity in freshwaters has been challenged by the immense environmental heterogeneity among lakes worldwide. We assessed protist diversity in the surface waters of 366 freshwater lakes across a north temperate to subarctic range covering nearly 8.4 million km2 of Canada. Sampled lakes represented broad gradients in size, trophic state, and watershed land use. Hypereutrophic lakes contained the least diverse and most distinct protist communities relative to nutrient-poor lakes. Greater taxonomic variation among eutrophic lakes was mainly a product of heterotroph and mixotroph diversity, whereas phototroph assemblages were more similar under high-nutrient conditions. Overall, local physicochemical factors, particularly ion and nutrient concentrations, elicited the strongest responses in community structure, far outweighing the effects of geographic gradients. Despite their contrasting distribution patterns, obligate phototroph and heterotroph turnover was predicted by an overlapping set of environmental factors, while the metabolic plasticity of mixotrophs may have made them less predictable. Notably, protist diversity was associated with variation in watershed soil pH and agricultural crop coverage, pointing to human impact on the land-water interface that has not been previously identified in studies on smaller scales. Our study exposes the importance of both within-lake and external watershed characteristics in explaining protist diversity and biogeography, critical information for further developing an understanding of how freshwater lakes and their watersheds are impacted by anthropogenic stressors. IMPORTANCE Freshwater lakes are experiencing rapid changes under accelerated anthropogenic stress and a warming climate. Microorganisms underpin aquatic food webs, yet little is known about how freshwater microbial communities are responding to human impact. Here, we assessed the diversity of protists and their myriad ecological roles in lakes varying in size across watersheds experiencing a range of land use pressures by leveraging data from a continental-scale survey of Canadian lakes. We found evidence of human impact on protist assemblages through an association with lake trophic state and extending to agricultural activity and soil characteristics in the surrounding watershed. Furthermore, trophic state appeared to explain the distributions of phototrophic and heterotrophic protists in contrasting ways. Our findings highlight the vulnerability of lake ecosystems to increased land use and the importance of assessing terrestrial interfaces to elucidate freshwater ecosystem dynamics.
Collapse
|
11
|
Road Salt versus Urban Snow Effects on Lake Microbial Communities. Microorganisms 2022; 10:microorganisms10040803. [PMID: 35456853 PMCID: PMC9026421 DOI: 10.3390/microorganisms10040803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Freshwater salinization is an ongoing concern for north temperate lakes; however, little is known about its impacts on microbial communities, particularly for bacteria. We tested the hypotheses that road de-icing salt induces changes in the microbial community structure of lake plankton, and that changes due to chloride would differ from those due to urban snowmelt because of additional chemicals in the snowmelt. In a laboratory incubator experiment, an overwintering plankton community in lake water was exposed for two weeks to either NaCl or municipal road snow with the same level of chloride. Microbial community structure as determined by 16S (prokaryotes) and 18S (eukaryotes) rRNA transcript analysis showed changes in response to the chloride-only enrichment, with some rare taxa becoming more prominent. Consistent with our hypothesis, the salt and the snow treatments induced different community changes. These results indicate that ecotoxicology assays based on a single salt addition may not reflect the in situ effects of salt-contaminated urban snow, and that the combined chemical effects of urban snowmelt require direct testing.
Collapse
|
12
|
Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc Natl Acad Sci U S A 2022; 119:2115033119. [PMID: 35193976 PMCID: PMC8892338 DOI: 10.1073/pnas.2115033119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
The salinity of freshwater ecosystems is increasing worldwide. Given that most freshwater organisms have no recent evolutionary history with high salinity, we expect them to have a low tolerance to elevated salinity caused by road deicing salts, agricultural practices, mining operations, and climate change. Leveraging the results from a network of experiments conducted across North America and Europe, we showed that salt pollution triggers a massive loss of important zooplankton taxa, which led to increased phytoplankton biomass at many study sites. We conclude that current water quality guidelines established by governments in North America and Europe do not adequately protect lake food webs, indicating an immediate need to establish guidelines where they do not exist and to reassess existing guidelines. Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
Collapse
|
13
|
Delaune KD, Nesich D, Goos JM, Relyea RA. Impacts of salinization on aquatic communities: Abrupt vs. gradual exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117636. [PMID: 34380226 DOI: 10.1016/j.envpol.2021.117636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Increasing chloride concentrations from road salt applications are an emerging threat to freshwater diversity in cold weather regions. Few studies have focused on how road salt affects freshwater biota and even fewer have focused on how the rate of exposure alters organism responses. We hypothesized that road salt concentrations delivered gradually would result in slower population declines and more rapid rebounds due to evolved tolerance. To test this hypothesis, we examined the responses of freshwater lake organisms to four environmentally relevant salt concentrations (100, 230, 860, and 1600 mg Cl-/L) that differed in application rate (abrupt vs. gradual). We used outdoor aquatic mesocosms containing zooplankton, filamentous algae, phytoplankton, periphyton, and macroinvertebrates. We found negative effects of road salt on zooplankton and macroinvertebrate abundance, but positive effects on phytoplankton and periphyton, likely resulting from reduced grazing. Only rarely did we detect a difference between abrupt vs gradual salt applications and the directions of those differences were not consistent. This affirms the need for additional research on how road salt pollution entering ecosystems at different frequencies and magnitudes will alter freshwater communities.
Collapse
Affiliation(s)
- Kelbi D Delaune
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA
| | - David Nesich
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA
| | - Jared M Goos
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12980, USA.
| |
Collapse
|
14
|
Niedrist GH, Cañedo-Argüelles M, Cauvy-Fraunié S. Salinization of Alpine rivers during winter months. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7295-7306. [PMID: 33029775 PMCID: PMC7840655 DOI: 10.1007/s11356-020-11077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 05/27/2023]
Abstract
Human-induced (i.e., secondary) salinization affects aquatic biodiversity and ecosystem functioning worldwide. While agriculture or resource extraction are the main drivers of secondary salinization in arid and semi-arid regions of the world, the application of deicing road salt in winter can be an important source of salts entering freshwaters in cold regions. Alpine rivers are probably affected by salinization, especially in highly populated mountain regions, although this remains to be explored. In this study, we analyzed multi-year conductance time series from four rivers in the European Alps and demonstrated that the application of deicing road salt is linked to peaking rivers' salinity levels during late winter/early spring. Especially in small catchments with more urban surfaces close to the rivers, conductance increased during constant low-flow periods in late winter and was less correlated with discharge than in summer. Thus, our results suggest that small rivers highly connected to urban infrastructures are prone to considerable salinity peaks during late winter/early spring. Given the low natural level of salinities in Alpine rivers, the aquatic biodiversity might be significantly affected by the recorded changes in conductance, with potential consequences on ecosystem functioning. Thereby, we urge the research community to assess the impact of secondary salinization in Alpine rivers and call for an implementation of management practices to prevent the degradation of these pristine and valuable ecosystems.
Collapse
Affiliation(s)
- Georg H Niedrist
- Department of Ecology, River and Conservation Research, University of Innsbruck, Innsbruck, Austria.
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology, Hydrology and Management group (FEHM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|