1
|
Shaw WJ, Kidder MK, Bare SR, Delferro M, Morris JR, Toma FM, Senanayake SD, Autrey T, Biddinger EJ, Boettcher S, Bowden ME, Britt PF, Brown RC, Bullock RM, Chen JG, Daniel C, Dorhout PK, Efroymson RA, Gaffney KJ, Gagliardi L, Harper AS, Heldebrant DJ, Luca OR, Lyubovsky M, Male JL, Miller DJ, Prozorov T, Rallo R, Rana R, Rioux RM, Sadow AD, Schaidle JA, Schulte LA, Tarpeh WA, Vlachos DG, Vogt BD, Weber RS, Yang JY, Arenholz E, Helms BA, Huang W, Jordahl JL, Karakaya C, Kian KC, Kothandaraman J, Lercher J, Liu P, Malhotra D, Mueller KT, O'Brien CP, Palomino RM, Qi L, Rodriguez JA, Rousseau R, Russell JC, Sarazen ML, Sholl DS, Smith EA, Stevens MB, Surendranath Y, Tassone CJ, Tran B, Tumas W, Walton KS. A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy. Nat Rev Chem 2024; 8:376-400. [PMID: 38693313 DOI: 10.1038/s41570-024-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/03/2024]
Abstract
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Simon R Bare
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | | | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany.
| | | | - Tom Autrey
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Shannon Boettcher
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Robert C Brown
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | | | - Jingguang G Chen
- Brookhaven National Laboratory, Upton, NY, USA
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | | | - Peter K Dorhout
- Vice President for Research, Iowa State University, Ames, IA, USA
| | | | | | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Aaron S Harper
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jonathan L Male
- Pacific Northwest National Laboratory, Richland, WA, USA
- Biological Systems Engineering Department, Washington State University, Pullman, WA, USA
| | | | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Aaron D Sadow
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Lisa A Schulte
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert S Weber
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brett A Helms
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Huang
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - James L Jordahl
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | | | - Kourosh Cyrus Kian
- Independent consultant, Washington DC, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Johannes Lercher
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Ping Liu
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - Karl T Mueller
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Long Qi
- Ames National Laboratory, Ames, IA, USA
| | | | | | - Jake C Russell
- Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Emily A Smith
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ba Tran
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William Tumas
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Baker-Fales M, Gutiérrez-Cano JD, Catalá-Civera JM, Vlachos DG. Temperature-dependent complex dielectric permittivity: a simple measurement strategy for liquid-phase samples. Sci Rep 2023; 13:18171. [PMID: 37875512 PMCID: PMC10597996 DOI: 10.1038/s41598-023-45049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023] Open
Abstract
Microwaves (MWs) are an emerging technology for intensified and electrified chemical manufacturing. MW heating is intimately linked to a material's dielectric permittivity. These properties are highly dependent on temperature and pressure, but such datasets are not readily available due to the limited accessibility of the current methodologies to process-oriented laboratories. We introduce a simple, benchtop approach for producing these datasets near the 2.45 GHz industrial, medical, and scientific (ISM) frequency for liquid samples. By building upon a previously-demonstrated bireentrant microwave measurement cavity, we introduce larger pressure- and temperature-capable vials to deduce temperature-dependent permittivity quickly and accurately for vapor pressures up to 7 bar. Our methodology is validated using literature data, demonstrating broad applicability for materials with dielectric constant ε' ranging from 1 to 100. We provide new permittivity data for water, organic solvents, and hydrochloric acid solutions. Finally, we provide simple fits to our data for easy use.
Collapse
Affiliation(s)
- Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA
| | - José D Gutiérrez-Cano
- Institute of Information and Communication Technologies (ITACA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - José M Catalá-Civera
- Institute of Information and Communication Technologies (ITACA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA.
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St., Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Zhu LT, Chen XZ, Ouyang B, Yan WC, Lei H, Chen Z, Luo ZH. Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Tao Zhu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xi-Zhong Chen
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, U.K
| | - Bo Ouyang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - He Lei
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhe Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review. ENERGIES 2022. [DOI: 10.3390/en15103588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The greatest challenge of our times is to identify low cost and environmentally friendly alternative energy sources to fossil fuels. From this point of view, the decarbonization of industrial chemical processes is fundamental and the use of hydrogen as an energy vector, usable by fuel cells, is strategic. It is possible to tackle the decarbonization of industrial chemical processes with the electrification of systems. The purpose of this review is to provide an overview of the latest research on the electrification of endothermic industrial chemical processes aimed at the production of H2 from methane and its use for energy production through proton exchange membrane fuel cells (PEMFC). In particular, two main electrification methods are examined, microwave heating (MW) and resistive heating (Joule), aimed at transferring heat directly on the surface of the catalyst. For cases, the catalyst formulation and reactor configuration were analyzed and compared. The key aspects of the use of H2 through PEM were also analyzed, highlighting the most used catalysts and their performance. With the information contained in this review, we want to give scientists and researchers the opportunity to compare, both in terms of reactor and energy efficiency, the different solutions proposed for the electrification of chemical processes available in the recent literature. In particular, through this review it is possible to identify the solutions that allow a possible scale-up of the electrified chemical process, imagining a distributed production of hydrogen and its consequent use with PEMs. As for PEMs, in the review it is possible to find interesting alternative solutions to platinum with the PGM (Platinum Group Metal) free-based catalysts, proposing the use of Fe or Co for PEM application.
Collapse
|
5
|
Chen TY, Baker-Fales M, Goyal H, Vlachos DG. Microwave Heating-Induced Temperature Gradients in Liquid–Liquid Biphasic Systems. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Himanshu Goyal
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Desai AV, Rainer DN, Pramanik A, Cabañero JM, Morris RE, Armstrong AR. Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries. SMALL METHODS 2021; 5:e2101016. [PMID: 34928021 DOI: 10.1002/smtd.202101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries are commanding increasing attention owing to their promising electrochemical performance and sustainability. Organic electrode materials (OEMs) complement such technologies as they can be sourced from biomass and recycling them is environmentally friendly. Organic anodes based on sodium carboxylates have exhibited immense potential, except the limitation of current synthesis methods concerning upscaling and energy costs. In this work, a rapid and energy efficient microwave-assisted synthesis for organic anodes is presented using sodium naphthalene-2,6-dicarboxylate as a model compound. Optimizing the synthesis and electrode composition enables the compound to deliver a reversible initial capacity of ≈250 mAh g-1 at a current density of 25 mA g-1 with a high initial Coulombic efficiency (≈78%). The capacity is stable over 400 cycles and the compound also exhibits good rate performance. The successful demonstration of this rapid synthesis may facilitate the transition to preparing organic battery materials by scalable, efficient methods.
Collapse
Affiliation(s)
- Aamod V Desai
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Daniel N Rainer
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Atin Pramanik
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Joel M Cabañero
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Russell E Morris
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, Czech Republic
| | - Anthony Robert Armstrong
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| |
Collapse
|
7
|
Wang Y, Chen TY, Vlachos DG. NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering. J Chem Inf Model 2021; 61:5312-5319. [PMID: 34694805 DOI: 10.1021/acs.jcim.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Automation and optimization of chemical systems require well-informed decisions on what experiments to run to reduce time, materials, and/or computations. Data-driven active learning algorithms have emerged as valuable tools to solve such tasks. Bayesian optimization, a sequential global optimization approach, is a popular active-learning framework. Past studies have demonstrated its efficiency in solving chemistry and engineering problems. We introduce NEXTorch, a library in Python/PyTorch, to facilitate laboratory or computational design using Bayesian optimization. NEXTorch offers fast predictive modeling, flexible optimization loops, visualization capabilities, easy interfacing with legacy software, and multiple types of parameters and data type conversions. It provides GPU acceleration, parallelization, and state-of-the-art Bayesian optimization algorithms and supports both automated and human-in-the-loop optimization. The comprehensive online documentation introduces Bayesian optimization theory and several examples from catalyst synthesis, reaction condition optimization, parameter estimation, and reactor geometry optimization. NEXTorch is open-source and available on GitHub.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States.,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St., Newark, Delaware 19716, United States
| | - Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States.,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St., Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States.,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St., Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Murphy BJ, Luy EA, Panzica KL, Johnson G, Sieben VJ. An Energy Efficient Thermally Regulated Optical Spectroscopy Cell for Lab-on-Chip Devices: Applied to Nitrate Detection. MICROMACHINES 2021; 12:mi12080861. [PMID: 34442483 PMCID: PMC8399308 DOI: 10.3390/mi12080861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022]
Abstract
Reagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the environment by surrounding the heated optical cell on four sides with integral air pockets, thereby realizing an insulated and suspended bridge structure. Our design was simulated in COMSOL Multiphysics and verified in a polymethyl methacrylate (PMMA) device. We evaluate the effectiveness of the insulated design by comparing it to a non-insulated cell. For temperatures up to 55 °C, the average power consumption was reduced by 49.3% in the simulation and 40.2% in the experiment. The designs were then characterized with the vanadium and Griess reagent assay for nitrate at 35 °C. Nitrate concentrations from 0.25 µM to 50 µM were tested and yielded the expected linear relationship with a limit of detection of 20 nM. We show a reduction in energy consumption from 195 J to 119 J per 10 min measurement using only 4 µL of fluid. Efficient heating on-chip will have broad applicability to numerous colorimetric assays.
Collapse
Affiliation(s)
- Benjamin J. Murphy
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
| | - Edward A. Luy
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
| | - Katerina L. Panzica
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
| | - Gregory Johnson
- RBR Limited, 359 Terry Fox Drive, Ottawa, ON K2K 2E7, Canada;
| | - Vincent J. Sieben
- Department of Electrical and Computer Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada; (B.J.M.); (E.A.L.); (K.L.P.)
- Correspondence:
| |
Collapse
|
9
|
Malhotra A, Chen W, Goyal H, Plaza-Gonzalez PJ, Julian I, Catala-Civera JM, Vlachos DG. Temperature Homogeneity under Selective and Localized Microwave Heating in Structured Flow Reactors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Abhinav Malhotra
- Delaware Energy Institute, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Weiqi Chen
- Delaware Energy Institute, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Himanshu Goyal
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | | | - Ignacio Julian
- Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | | | - Dionisios G. Vlachos
- Delaware Energy Institute, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Chen TY, Desir P, Bracconi M, Saha B, Maestri M, Vlachos DG. Liquid–Liquid Microfluidic Flows for Ultrafast 5-Hydroxymethyl Furfural Extraction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Pierre Desir
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Mauro Bracconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
| | - Basudeb Saha
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), 221 Academy Street, Newark, Delaware 19716, United States
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|