1
|
Xu MM, Liu YH, Zhang X, Lv JA, Zhao RC, Xie LH, Li JR. Highly Efficient Propyne/Propylene Separation in a "Flexible-Robust" and Hydrolytically Stable Cu(II)-MOF. Inorg Chem 2023. [PMID: 37478416 DOI: 10.1021/acs.inorgchem.3c01285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Metal-organic frameworks (MOFs) are a class of promising adsorbents for light hydrocarbon separations. Among them, the so-called "flexible-robust" MOFs combine the advantages of flexibility and rigidity in structure and could show enhanced gas separation selectivity as well as improved gas uptake at low pressure. Interpenetrated MOFs offer a platform to explore the "flexible-robust" feature of MOFs based on their subnetwork displacement in the process of gas adsorption. Herein, we present two hydrolytically stable MOFs (BUT-308 and BUT-309) with interpenetrated structures and fascinating propyne/propylene separation performance. BUT-308 is composed of interpenetrated 2D Cu(BDC-NH2)BPB layers (H2BDC-NH2 = 2-aminobenzene-1,4-dicarboxylic acid; BPB = 1,4-bis(4-pyridyl)benzene), while BUT-309 consists of twofold interpenetrated 3D pillared-layer Cu2(BDC-NH2)2(BPB-CF3) nets (BPB-CF3 = 2-trifluoromethyl-1,4-bis(4-pyridyl)benzene). Gas adsorption measurements showed that BUT-309 was a "flexible-robust" adsorbent with multistep adsorption isotherms for C3H4 rather than C3H6 at a wide temperature range. The guest-dependent pore-opening behavior endows BUT-309 with high potential in the C3H4/C3H6 separation. The C3H4 adsorption measurements of BUT-309 at 273-323 K showed that the lowering of the temperature induced the pore-opening action at lower pressure. Column breakthrough experiments further confirmed the capability of BUT-309 for the efficient removal of C3H4 from a C3H4/C3H6 binary gas, and the C3H6 processing capacity at 273 K (15.7 cm3 g-1) was higher than that at 298 K (35.2 cm3 g-1). This work shows a rare example of "flexible-robust" MOFs and demonstrated its high potential for C3H4/C3H6 separation.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yu-Hui Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jia-Ao Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chao Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Jiang Y, Wang L, Yan T, Hu J, Sun W, Krishna R, Wang D, Gu Z, Liu D, Cui X, Xing H, Zhang Y. Insights into the thermodynamic-kinetic synergistic separation of propyne/propylene in anion pillared cage MOFs with entropy-enthalpy balanced adsorption sites. Chem Sci 2023; 14:298-309. [PMID: 36687342 PMCID: PMC9811657 DOI: 10.1039/d2sc05742e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Propyne/propylene (C3H4/C3H6) separation is an important industrial process yet challenged by the trade-off of selectivity and capacity due to the molecular similarity. Herein, record C3H4/C3H6 separation performance is achieved by fine tuning the pore structure in anion pillared MOFs. SIFSIX-Cu-TPA (ZNU-2-Si) displays a benchmark C3H4 capacity (106/188 cm3 g-1 at 0.01/1 bar and 298 K), excellent C3H4/C3H6 IAST selectivity (14.6-19.3) and kinetic selectivity, and record high C3H4/C3H6 (10/90) separation potential (36.2 mol kg-1). The practical C3H4/C3H6 separation performance is fully demonstrated by breakthroughs under various conditions. 37.8 and 52.9 mol kg-1 of polymer grade C3H6 can be produced from 10/90 and 1/99 C3H4/C3H6 mixtures. 4.7 mol kg-1 of >99% purity C3H4 can be recovered by a stepped desorption process. Based on the in situ single crystal analysis and DFT calculation, an unprecedented entropy-enthalpy balanced adsorption pathway is discovered. MD simulation further confirmed the thermodynamic-kinetic synergistic separation of C3H4/C3H6 in ZNU-2-Si.
Collapse
Affiliation(s)
- Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianbo Hu
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam Netherlands
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University Jiangsu 225009 China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Xili Cui
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Huabin Xing
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
3
|
Jin F, Lin E, Wang T, Geng S, Hao L, Zhu Q, Wang Z, Chen Y, Cheng P, Zhang Z. Rationally Fabricating Three-Dimensional Covalent Organic Frameworks for Propyne/Propylene Separation. J Am Chem Soc 2022; 144:23081-23088. [DOI: 10.1021/jacs.2c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fazheng Jin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Liqin Hao
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qianqian Zhu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Shen JW, Zhang LJ, Huang Y, Chen L, Liu QY, Wang YL. Enhancement of Propadiene/Propylene Separation Performance of Metal–Organic Frameworks by an Amine-Functionalized Strategy. Inorg Chem 2022; 61:18752-18758. [DOI: 10.1021/acs.inorgchem.2c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ji-Wei Shen
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Li-Juan Zhang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yun Huang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
| |
Collapse
|
5
|
Gao B, Zhang Z, Hu J, Cui J, Chen L, Cui X, Xing H. Efficient separation of C4 olefins using tantalum pentafluor oxide anion-pillared hybrid microporous material. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Xu MM, Liu YH, Zhang X, Wang HT, Xie LH, Li JR. Size exclusion propyne/propylene separation in a ultramicroporous yet hydrophobic metal-organic framework. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propyne/propylene separation is important in the petrochemical industry but challenging resulting from their similar physical properties and close molecular sizes. Herein, we present two isoreticular ultramicroporous Zn(Ⅱ)-MOFs, Zn2(ATZ)2(TPDC) (BUT-305, H2TPDC...
Collapse
|
7
|
Wu YB, Xiong C, Liu QY, Ma JG, Luo F, Wang YL. Structural Evolution from Noninterpenetrated to Interpenetrated Thorium-Organic Frameworks Exhibiting High Propyne Storage. Inorg Chem 2021; 60:6472-6479. [PMID: 33844911 DOI: 10.1021/acs.inorgchem.1c00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two thorium-organic frameworks of [Th6O4(OH)4(TFBPDC)6(H2O)6]n (Th-TFBPDC) and [Th6O4(OH)4(TFBPDC)4(HCOO)4(H2O)6]n (Th-TFBPDC-i) constructed from the 3,3',5,5'-tetrakis(fluoro)biphenyl-4,4'-dicarboxylate (TFBPDC2-) ligand were obtained in a reaction. At an early stage of the reaction, the formation of the three-dimensional (3D) framework of Th-TFBPDC was discovered. At a later stage of the reaction, the complete product of Th-TFBPDC-i was obtained. The structural evolution from a noninterpenetrated network of Th-TFBPDC to a 2-fold interpenetrated network of Th-TFBPDC-i is a dissolution-recrystallization process and rationalized as the four equatorial TFBPDC2- ligands in an octahedral [Th6O4(OH)4(TFBPDC)12] unit were displaced by four formate ligands to form a [Th6O4(OH)4(TFBPDC)8(HCOO)4] unit via a ligand substitution reaction. The large pore volume as well as the strong interactions between the host framework and guest propyne (C3H4) molecules demonstrated by computational results endow the highly water-stable Th-TFBPDC with the best-performing C3H4 storage under ambient conditions. This work presents a rare example of structural evolution from a 3D noninterpenetrated network to a 2-fold 3D interpenetrated network and a highly promising metal-organic framework (MOF) for C3H4 storage with a C3H4 uptake of 8.16 mmol g-1 at 298 K.
Collapse
Affiliation(s)
- Yuan-Bo Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Cheng Xiong
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jian-Guo Ma
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
8
|
Zulys A, Yulia F, Muhadzib N, Nasruddin. Biological Metal–Organic Frameworks (Bio-MOFs) for CO2 Capture. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Agustino Zulys
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Fayza Yulia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Naufal Muhadzib
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Nasruddin
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
9
|
Gallate-Based Metal–Organic Frameworks, a New Family of Hybrid Materials and Their Applications: A Review. CRYSTALS 2020. [DOI: 10.3390/cryst10111006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Within three decades of fundamental findings in research on metal–organic frameworks (MOFs), a new family of hybrid materials known as gallate-based MOFs, consisting of metal salt and gallic acid, have been of great interest. Due to the fact that gallic acid is acknowledged to display a range of bioactivities, gallate-based MOFs have been initially expended in biomedical applications. Recently, gallate-based MOFs have been gradually acting as new alternative materials in chemical industrial applications, in which they were first reported for the adsorptive separation of light hydrocarbon separations. However, to date, none of them have been related to CO2/CH4 separation. These porous materials have a bright future and can be kept in development for variety of applications in order to be applied in real industrial practices. Therefore, this circumstance creates a new opportunity to concentrate more on studies in CO2/CH4 applications by using porous material gallate-based MOFs. This review includes the description of recent gallate-based MOFs that presented remarkable properties in biomedical areas and gas adsorption and separation, as well as their future potential application.
Collapse
|