1
|
Jing S, Wang H, Wang A, Cheng R, Liang H, Chen F, Brouzgou A, Tsiakaras P. Surface plasmon resonance Bismuth-modified NH 2-UiO-66 with enhanced photocatalytic tetracycline degradation performance. J Colloid Interface Sci 2024; 655:120-132. [PMID: 37931552 DOI: 10.1016/j.jcis.2023.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
For nearly a century, the misuse of antibiotics has gradually polluted water and threatened human health. Photocatalysis is considered an efficient way to remove antibiotics from water. Zirconium-based metal-organic frameworks have attracted much attention as promising photocatalysts for the degradation of antibiotics. However, single Zirconium-based metal-organic frameworks can still not achieve a more satisfactory photocatalytic efficiency, due to poor light absorption and charge separation efficiency. In this study, a novel metal-loaded metal-organic frameworks material was explored. As a potential photocatalytic material, the performance of NH2-UiO-66 in the photocatalytic degradation of tetracycline was greatly improved just by the loading of a single metal. Bismuth/NH2-UiO-66 photocatalysts of various compositions were physicochemically (TEM, SEM, XRD, XPS, BET, FTIR, UV-VIS, PL), and electrochemically (electrochemical impedance spectroscopy, photocurrent response) characterized. We evaluated the photocatalytic performance of Bismuth/NH2-UiO-66 composites by measuring their ability towards tetracycline decomposition in simulated sunlight irradiation conditions. The experimental results indicated that the introduction of metal Bismuth significantly boosts the photocatalytic activity of the composite catalysts. The final degradation rate of Bismuth/NH2-UiO-66 for tetracycline was found to be 95.8%, namely 2.7 times higher than pure NH2-UiO-66. This behavior is due to the surface plasmon resonance effect of Bismuth, which ameliorates the photocatalyst's electron-hole separation and strengthens the charge transfer. Apart from that, the presence of Bismuth magnifies the visible-light absorption range of Bismuth/NH2-UiO-66. In this study, an innovative approach for designing efficient and cost-effective metal-modified metal-organic frameworks photocatalysts is proposed.
Collapse
Affiliation(s)
- Shengyu Jing
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece
| | - Haoran Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Anhu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Ruolin Cheng
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
| | - Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221008, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China.
| | - Angeliki Brouzgou
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece.
| |
Collapse
|
2
|
Yang F, Du M, Yin K, Qiu Z, Zhao J, Liu C, Zhang G, Gao Y, Pang H. Applications of Metal-Organic Frameworks in Water Treatment: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105715. [PMID: 34881495 DOI: 10.1002/smll.202105715] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The ever-expanding scale of industry and agriculture has led to the gradual increase of pollutants (e.g., heavy metal ions, synthetic dyes, and antibiotics) in water resources, and the ecology and wastewater are grave problems that need to be solved urgently and has attracted widespread attention from the research community and industry in recent years. Metal-organic frameworks (MOFs) are a type of organic-inorganic hybrid material with a distinctive 3D network crystal structure. Lately, MOFs have made striking progress in the fields of adsorption, catalytic degradation, and biomedicine on account of their large specific surface and well-developed pore structure. This review summarizes the latest research achievements in the preparation of pristine MOFs, MOF composites, and MOF derivatives for various applications including the removal of heavy metal ions, organic dyes, and other harmful substances in sewage. Furthermore, the working mechanisms of utilizing adsorption, photocatalytic degradation, and membrane separation technologies are also briefly described for specific pollutants removal from sewage. It is expected that this review will provide inspiration and references for the synthesis of pristine MOFs as well as their composites and derivatives with excellent water treatment performance.
Collapse
Affiliation(s)
- Feiyu Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, P. R. China
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Kailiang Yin
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiawei Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Chunli Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
3
|
Feng X, Jena HS, Krishnaraj C, Leus K, Wang G, Chen H, Jia C, Van Der Voort P. Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60715-60735. [PMID: 34874167 DOI: 10.1021/acsami.1c13525] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UiO-66 is regarded as an epitome of metal-organic frameworks (MOFs) because of its stability. Defect engineering has been used as a toolbox to alter the performance of MOFs. UiO-66 is among the most widely explored MOFs because of its capability to bear a high number of defects without undergoing structural collapse. Several representative works in the field of MOF-based defect engineering are available based on UiO-66. In this review, more emphasis is given toward the construction of catalytic sites by engineering defects in UiO-66 as a representative including all the detailed synthesis procedures for inducing defects, and the characterization techniques used to analyze these defects in UiO-66 are discussed. Furthermore, a comprehensive review for the defects themselves and the support using defects in catalysis is provided to accentuate the importance of defect engineering.
Collapse
Affiliation(s)
- Xiao Feng
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Himanshu Sekhar Jena
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Chidharth Krishnaraj
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Karen Leus
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Guangbo Wang
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Jinan 250014, China
| | - Hui Chen
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| | - Chunmei Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, 281 Krijgslaan (S3), B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei Darvishi SM. ZnO Photocatalyst Revisited: Effective Photocatalytic Degradation of Emerging Contaminants Using S-Doped ZnO Nanoparticles under Visible Light Radiation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03192] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Mirzaeifard
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Milad Jourshabani
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | | |
Collapse
|