1
|
Nie L, Li S, Cao M, Han N, Chen Y. A brief review of preparation and applications of monolithic aerogels in atmospheric environmental purification. J Environ Sci (China) 2025; 149:209-220. [PMID: 39181635 DOI: 10.1016/j.jes.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.
Collapse
Affiliation(s)
- Linfeng Nie
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangde Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengjie Cao
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Sun Z, Wang X, An H, Liang S, Li N. A review on intelligence of cellulose based materials. Carbohydr Polym 2024; 338:122219. [PMID: 38763716 DOI: 10.1016/j.carbpol.2024.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cellulose based materials are widely used in various fields such as papermaking, packaging, composite materials, textiles and clothing due to their diverse types, environmental friendliness, natural degradation, high specific strength, and low cost. The intelligence of cellulose based materials will further expand their application fields. This article first gives an in-depth analyzation on the intelligent structural design of these materials according to the two major categories of isotropic and anisotropic, then lists the main preparation methods of cellulose based intelligent materials. Subsequently, this article systematically summarizes the recent intelligent response methods and characteristics of cellulose based materials, and extensively elaborates on the intelligent application of these materials. Finally, the prospects for the intelligence of cellulose based materials are discussed.
Collapse
Affiliation(s)
- Zhanying Sun
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Xin Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Haoran An
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Shuang Liang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| | - Na Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China..
| |
Collapse
|
3
|
Kong Y, Liu Q, Liu Z, Shen X. Use of Ball Drop Casting and Surface Modification for the Development of Amine-Functionalized Silica Aerogel Globules for Dynamic and Efficient Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38476078 DOI: 10.1021/acsami.3c17993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Amine-functionalized silica aerogel globules (AFSAGs) were first synthesized via a simple ball drop casting method followed by amine grafting. The effect of grafting time on the structure and CO2 adsorption performance of the AFSAGs was investigated. The CO2 adsorption performance was comprehensively studied by breakthrough curves, adsorption capacity and rates, surface amine loading and density, amine efficiency, adsorption halftime, and cyclic stability. The results demonstrate that prolonging the grafting time does not lead to a significant increase in surface amine content owing to pore space blockage by superabundant amine groups. The CO2 adsorption performance shows obvious dependence on surface amine density, determined by both the surface amine content and specific surface area, and working temperature. AFSAGs with a grafting time of 24 h (AFSAG24) with a moderate surface amine density have optimal CO2 adsorption capacities, which are 1.78 and 2.14 mmol/g at 25 °C with dry and humid 400 ppm CO2, respectively. The amine efficiency of AFSAG24 with low CO2 concentrations, 0.38-0.63 with dry 400 ppm-1% CO2, is the highest among the reported amine-functionalized adsorbents. After estimation with different diffusion models, the CO2 adsorption process of AFSAG24 is governed by film diffusion and intraparticle diffusion. In the range of 1-4 mm, the ball size does not affect the CO2 adsorption capacity of AFSAG24 obviously. AFSAG24 offers significant advantages for practical direct air capture compared with its state-of-the-art counterparts, such as high dynamic adsorption capacity and amine efficiency, excellent stability, and outstanding adaptation to the environment.
Collapse
Affiliation(s)
- Yong Kong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Quan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Zhiyuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
4
|
Baraka F, Labidi J. The emergence of nanocellulose aerogels in CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169093. [PMID: 38056651 DOI: 10.1016/j.scitotenv.2023.169093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Mitigating the effect of climate change toward a sustainable development is one of the main challenges of our century. The emission of greenhouse gases, especially carbon dioxide (CO2), is a leading cause of the global warming crisis. To address this issue, various sustainable strategies have been formulated for CO2 capture. Renewable nanocellulose aerogels have risen as a highly attractive candidate for CO2 capture thanks to their porous and surface-tunable nature. Nanocellulose offer distinctive characteristics, including significant aspect ratios, exceptional biodegradability, lightweight nature, and the ability for chemical modification due to the abundant presence of hydroxyl groups. In this review, recent research studies on nanocellulose-based aerogels designed for CO2 absorption have been highlighted. The state-of-the-art of nanocellulose-based aerogel has been thoroughly assessed, including their synthesis, drying methods, and characterization techniques. Additionally, discussions were held about the mechanisms of CO2 adsorption, the effects of the porous structure, surface functionalization, and experimental parameters. Ultimately, this synthesis review provides an overview of the achieved adsorption rates using nanocellulose-based aerogels and outlines potential improvements that could lead to optimal adsorption rates. Overall, this research holds significant promise for tackling the challenges of climate change and contributing to a more sustainable future.
Collapse
Affiliation(s)
- Farida Baraka
- Biorefinery Processes Group, Chemical and Environmental Engineering Department, Engineering Faculty of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain
| | - Jalel Labidi
- Biorefinery Processes Group, Chemical and Environmental Engineering Department, Engineering Faculty of Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia, Spain.
| |
Collapse
|
5
|
Saddique A, Kim JC, Bae J, Cheong IW. Low-temperature, ultra-fast, and recyclable self-healing nanocomposites reinforced with non-solvent silylated modified cellulose nanocrystals. Int J Biol Macromol 2024; 254:127984. [PMID: 37951429 DOI: 10.1016/j.ijbiomac.2023.127984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Developing polymeric materials with remarkable mechanical properties and fast self-healing performance even at low temperatures is challenging. Herein, the polymeric nanocomposites containing silane-treated cellulose nanocrystals (SCNC) with ultrafast self-healing and exceptional mechanical characteristics were developed even at low temperatures. First, CNC is modified with a cyclic silane coupling agent using an eco-friendly chemical vapor deposition method. The nanocomposite was then fabricated by blending SCNC with matrix prepolymer, prepared from monomers that possess lower critical solution temperature, followed by the inclusion of dibutyltin dilaurate and hexamethylene diisocyanate. The self-healing capability of the novel SCNC/polymer nanocomposites was enhanced remarkably by increasing the content of SCNC (0-3 wt%) and reaching (≥99 %) at temperatures (5 & 25 °C) within <20 min. Moreover, SCNC-3 showed a toughness of (2498 MJ/m3) and SCNC-5 displayed a robust tensile strength of (22.94 ± 0.4 MPa) whereas SCNC-0 exhibited a lower tensile strength (7.4 ± 03 MPa) and toughness of (958 MJ/m3). Additionally, the nanocomposites retain their original mechanical properties after healing at temperatures (5 & 25 °C) owing to the formation of hydrogen bonds via incorporation of the SCNC. These novel SCNC-based self-healable nanocomposites with tunable mechanical properties offer novel insight into preparing damage and temperature-responsive flexible and wearable devices.
Collapse
Affiliation(s)
- Anam Saddique
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jin Chul Kim
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea.
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA; Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Zhu W, Chen M, Jang J, Han M, Moon Y, Kim J, You J, Li S, Park T, Kim J. Amino-functionalized nanocellulose aerogels for the superior adsorption of CO 2 and separation of CO 2/CH 4 mixture gas. Carbohydr Polym 2024; 323:121393. [PMID: 37940286 DOI: 10.1016/j.carbpol.2023.121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose-based aerogels have been considered as one of the ideal candidates for CO2 capture in practical applications owing to their lightweight and porous properties. Additionally, various adsorbents with amine groups have been widely used as effective CO2 capture and storage strategies. Herein, amino-functionalized aerogels were prepared by sol-gel and freeze-drying methods using two typical nanocelluloses (cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs)) as substrates. In addition, the reaction parameters for grafting and amino functionalization were optimized. The CNC and CNF aerogels could be easily modified by the hydrothermal growth of the amino group, and they exhibited attractive properties in terms of CO2 adsorption, recyclability, thermal stability, hydrophobicity, and CO2/CH4 mixture separation. The amino-functionalized CNF aerogel exhibited superior performance to the CNC aerogel, which was attributed to the increased cross-linking binding sites for hydrogen bonding in the CNF aerogel. The results of this study indicated that amino-functionalized nanocellulose aerogels can be considered a promising biodegradable, sustainable, and environmentally friendly material for CO2 capture and removal of CO2 from CH4.
Collapse
Affiliation(s)
- Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meiling Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jieun Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yeonggyun Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junghwan Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Song Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Teahoon Park
- Carbon Composite Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Dong Z, Peydayesh M, Donat F, Jin T, Li T, Müller CR, Mezzenga R. Amine-Functionalized Amyloid Aerogels for CO 2 Capture. CHEMSUSCHEM 2023; 16:e202300767. [PMID: 37681554 DOI: 10.1002/cssc.202300767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Climate change caused by excessive CO2 emissions constitutes an increasingly dire threat to human life. Reducing CO2 emissions alone may not be sufficient to address this issue, so that the development of emerging adsorbents for the direct capture of CO2 from the air becomes essential. Here, we apply amyloid fibrils derived from different food proteins as the solid adsorbent support and develop aminosilane-modified amyloid fibril-templated aerogels for CO2 capture applications. The results indicate that the CO2 sorption properties of the aerogels depend on the mixing ratio of aminosilane featuring different amine groups and the type of amyloid fibril used. Notably, amine-functionalized β-lactoglobulin (BLG) fibril-templated aerogels show the highest CO2 adsorption capacity of 51.52 mg (1.17 mmol) CO2 /g at 1 bar CO2 and 25.5 mg (0.58 mmol) CO2 /g at 400 ppm; similarly, the CO2 adsorption capacity of chitosan-BLG fibril hybrid aerogels is superior to that of pure chitosan. This study provides a proof-of-concept design for an amyloid fibril-templated hybrid material facilitating applications of protein-based adsorbents for CO2 capture, including direct air capture.
Collapse
Affiliation(s)
- Zhou Dong
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Tonghui Jin
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Ting Li
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, 214122, Wuxi, China
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| |
Collapse
|
8
|
Yang J, Han X, Yang W, Hu J, Zhang C, Liu K, Jiang S. Nanocellulose-based composite aerogels toward the environmental protection: Preparation, modification and applications. ENVIRONMENTAL RESEARCH 2023; 236:116736. [PMID: 37495064 DOI: 10.1016/j.envres.2023.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Nanocellulose aerogel has the advantages of porosity, low density and high specific surface area, which can effectively realize the adsorption and treatment of wastewater waste gas. The methods of preparing nanocellulose mainly include mechanical, chemical and biological methods. Nanocellulose is formed into nanocellulose aerogel after gelation, solvent replacement and drying processes. Based on the advantages of easy modification of nanocellulose aerogels, nanocellulose aerogels can be functionalized with conductive fillers, reinforcing fillers and other materials to give nanocellulose aerogels in electrical, mechanical and other properties. Through functionalization, the properties of nanocellulose composite aerogel such as hydrophobicity and adsorption are improved, and the aerogel is endowed with the ability of electrical conductivity and electromagnetic shielding. Through functionalization, the applicability and general applicability of nanocellulose composite aerogel in the field of environmental protection are improved. In this paper, the preparation and functional modification methods of nanocellulose aerogels are reviewed, and the application prospects of nanocellulose composite aerogels in common environmental protection fields such as dye adsorption, heavy metal ion adsorption, gas adsorption, electromagnetic shielding, and oil-water separation are specifically reviewed, and new solutions are proposed.
Collapse
Affiliation(s)
- Jingjiang Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weisen Yang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Jiapeng Hu
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International In-novation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| |
Collapse
|
9
|
Sepahvand S, Kargarzadeh H, Jonoobi M, Ashori A, Ismaeilimoghadam S, Varghese RT, Chirayl CJ, Azimi B, Danti S. Recent developments in nanocellulose-based aerogels as air filters: A review. Int J Biol Macromol 2023; 246:125721. [PMID: 37419257 DOI: 10.1016/j.ijbiomac.2023.125721] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.
Collapse
Affiliation(s)
- Sima Sepahvand
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Poland
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Bahareh Azimi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
10
|
Liu J, Yu J, Xu C, Li B, Liu L, Lu C, Fan Y. One-pot and one-step preparation of "living" cellulose nanofiber hydrogel with active double-bond via chemical vapor deposition. Int J Biol Macromol 2023:125415. [PMID: 37327926 DOI: 10.1016/j.ijbiomac.2023.125415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Due to the existence of water, it is still a challenge to conduct chemical modification on cellulose nanofiber (CNF) hydrogels with active double bonds. A simple one-pot and one-step method for constructing "living" CNF hydrogel with double bond was created at room temperature. The chemical vapor deposition (CVD) of methacryloyl chloride (MACl) was used to introduce physical-trapped, chemical-anchored and functional double bonds into TEMPO-oxidized cellulose nanofiber (TOCN) hydrogels. TOCN hydrogel could be fabricated within just 0.5 h, the minimum dosage of MACl could be reduced to 3.22 mg/g (MACl/TOCN hydrogel). Furthermore, the CVD methods showed high efficiency for mass production and recyclability. Moreover, the chemical "living" reactivity of the introduced double bonds were verified by the freezing and UV crosslinking, radical polymerization and thiol-ene click reaction. Compared with pure TOCN hydrogel, the obtained functionalized TOCN hydrogel exhibited remarkable improvements in mechanical properties, with enhancements of 12.34 times and 2.04 times, as well as an increase in hydrophobicity by 2.14 times and a fluorescence performance improvement of 2.93 times.
Collapse
Affiliation(s)
- Jia Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaoqun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Bowen Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Gomri C, Cretin M, Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review. Carbohydr Polym 2022; 294:119790. [DOI: 10.1016/j.carbpol.2022.119790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
|
12
|
Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. Int J Biol Macromol 2022; 222:1-29. [PMID: 36156339 DOI: 10.1016/j.ijbiomac.2022.09.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022]
Abstract
The most common and abundant polymer in nature is the linear polysaccharide cellulose, but processing it requires a new approach since cellulose degrades before melting and does not dissolve in ordinary organic solvents. Cellulose aerogels are exceptionally porous (>90 %), have a high specific surface area, and have low bulk density (0.0085 mg/cm3), making them suitable for a variety of sophisticated applications including but not limited to adsorbents. The production of materials with different qualities from the nanocellulose based aerogels is possible thanks to the ease with which other chemicals may be included into the structure of nanocellulose based aerogels; despite processing challenges, cellulose can nevertheless be formed into useful, value-added products using a variety of traditional and cutting-edge techniques. To improve the adsorption of these aerogels, rheology, 3-D printing, surface modification, employment of metal organic frameworks, freezing temperature, and freeze casting techniques were all investigated and included. In addition to exploring venues for creation of aerogels, their integration with CNC liquid crystal formation were also explored and examined to pursue "smart adsorbent aerogels". The objective of this endeavour is to provide a concise and in-depth evaluation of recent findings about the conception and understanding of nanocellulose aerogel employing a variety of technologies and examination of intricacies involved in enhancing adsorption properties of these aerogels.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
13
|
Roy S, Das T, Dasgupta Ghosh B, Goh KL, Sharma K, Chang YW. From Hazardous Waste to Green Applications: Selective Surface Functionalization of Waste Cigarette Filters for High-Performance Robust Triboelectric Nanogenerators and CO 2 Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31973-31985. [PMID: 35792904 DOI: 10.1021/acsami.2c06463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article reports a novel and rational approach to convert waste cigarette filters (CFs), one of the largest sources of ocean pollution, into high-performance triboelectric nanogenerators (TENGs) and efficient CO2-capturing adsorbents. CFs are plasticized cellulose acetate, which take several years to degrade. To revalorize these fibers, selective amine surface functionalization is performed (10PAL-20T-CFs). For the proof of concept, when the modified fibers are employed in a TENG, it could generate an output voltage (96.63 V) and current (9.37 μA) that are, respectively, 43 and 8 times higher than those obtained employing the pristine CFs for the nanogenerator. The proposed TENG displays an instantaneous peak power of 3.75 mW, which is higher than that of many recently reported TENGs made from cellulose materials. Moreover, the TENG displayed outstanding durability to humidity and high-performance stability when it is subjected to cyclic loading (i.e., 12,000 cycles of loading-unloading). A 9 cm2 TENG could effectively light up 100 or more colored light-emitting diodes when it is manually pressed. Finally, the modified filter fibers show an excellent CO2 adsorption capacity of 1.93 mmol/g, which is 9.2 times higher than that obtained using the pristine fibers. These results demonstrate that hazardous wastes such as CFs can be upcycled into valuable resources.
Collapse
Affiliation(s)
- Sunanda Roy
- Newcastle University in Singapore, 172A Ang Mo Kio Avenue, Singapore 567739, Singapore
- Department of Polymer & Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh 24701, India
| | - Tanya Das
- Techno India University, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | | | - Kheng Lim Goh
- Newcastle University in Singapore, 172A Ang Mo Kio Avenue, Singapore 567739, Singapore
| | - Kamal Sharma
- Mechanical Engineering, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Young-Wook Chang
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, South Korea
| |
Collapse
|
14
|
Wang J, Yi D, Peng X, Yang H, Wang T, Gao J, Xie B, Su G. The hydrophobically modified cellulose-based aerogel loaded with BTA enhances the anticorrosion and active self-healing properties of epoxy coating. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Atoufi Z, Reid MS, Larsson PA, Wågberg L. Surface tailoring of cellulose aerogel-like structures with ultrathin coatings using molecular layer-by-layer assembly. Carbohydr Polym 2022; 282:119098. [DOI: 10.1016/j.carbpol.2022.119098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/29/2022]
|
16
|
Barrulas RV, López-Iglesias C, Zanatta M, Casimiro T, Mármol G, Carrott MR, García-González CA, Corvo MC. The AEROPILs Generation: Novel Poly(Ionic Liquid)-Based Aerogels for CO2 Capture. Int J Mol Sci 2021; 23:ijms23010200. [PMID: 35008627 PMCID: PMC8745277 DOI: 10.3390/ijms23010200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
CO2 levels in the atmosphere are increasing exponentially. The current climate change effects motivate an urgent need for new and sustainable materials to capture CO2. Porous materials are particularly interesting for processes that take place near atmospheric pressure. However, materials design should not only consider the morphology, but also the chemical identity of the CO2 sorbent to enhance the affinity towards CO2. Poly(ionic liquid)s (PILs) can enhance CO2 sorption capacity, but tailoring the porosity is still a challenge. Aerogel’s properties grant production strategies that ensure a porosity control. In this work, we joined both worlds, PILs and aerogels, to produce a sustainable CO2 sorbent. PIL-chitosan aerogels (AEROPILs) in the form of beads were successfully obtained with high porosity (94.6–97.0%) and surface areas (270–744 m2/g). AEROPILs were applied for the first time as CO2 sorbents. The combination of PILs with chitosan aerogels generally increased the CO2 sorption capability of these materials, being the maximum CO2 capture capacity obtained (0.70 mmol g−1, at 25 °C and 1 bar) for the CHT:P[DADMA]Cl30%AEROPIL.
Collapse
Affiliation(s)
- Raquel V. Barrulas
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (R.V.B.); (M.Z.)
| | - Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.G.-G.)
| | - Marcileia Zanatta
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (R.V.B.); (M.Z.)
| | - Teresa Casimiro
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| | - Gonzalo Mármol
- LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Evora, Portugal; (G.M.); (M.R.C.)
| | - Manuela Ribeiro Carrott
- LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Evora, Portugal; (G.M.); (M.R.C.)
| | - Carlos A. García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (C.L.-I.); (C.A.G.-G.)
| | - Marta C. Corvo
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (R.V.B.); (M.Z.)
- Correspondence: ; Tel.: +351-21-294-8562; Fax: +351-21-294-8558
| |
Collapse
|
17
|
Mersal GA, El-Sheshtawy HS, Yahia I, Assaf KI. Enhanced adsorption of CO2 on cellulose and chitosan surface by H2O Co-adsorption. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Zhang W, Zhou N, Zhang Y, Huang Z, Hu H, Liang J, Qin Y. Construction of thermoplastic cellulose esters matrix composites with enhanced flame retardancy and mechanical properties by embedding hydrophobic magnesium hydroxide. J Appl Polym Sci 2021. [DOI: 10.1002/app.50677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wuxiang Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Nan Zhou
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Jing Liang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Yuben Qin
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| |
Collapse
|
19
|
In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO 2 adsorption. Carbohydr Polym 2021; 270:118376. [PMID: 34364620 DOI: 10.1016/j.carbpol.2021.118376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
Zeolitic imidazolate frameworks (ZIFs) hold great potential for carbon capture, while a major challenge for the practical application of ZIFs is the development of convenient three-dimensional bulk materials. Here, sustainable and biodegradable bacterial cellulose (BC) was used as the substrate for ZIF growth. Amino-functionalized ZIF-8 (ZIF-8-NH2) was prepared within BC substrate via an in situ growth approach. ZIF crystals were wrapped uniformly over cellulose fibers and the chelating effect between metal (zinc) ions and hydroxyl groups makes the composites have high interface affinity and compatibility. The resulting foams presented a high CO2 adsorption capacity of 1.63 mmol/g (25 °C, 1 bar). Moreover, ZIF-8-NH2@BC foams are facile to be regenerated by heating at 80 °C. This work provides a new avenue to construct ZIF/cellulose composites for gas treatment applications.
Collapse
|