1
|
Su D, Chen P, Li C, Yan Y, Zhao R, Yue Q, Qiao Y. Research Progress in Microporous Materials for Selective Adsorption and Separation of Methane from Low-Grade Gas. Molecules 2024; 29:4404. [PMID: 39339399 PMCID: PMC11433678 DOI: 10.3390/molecules29184404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Given that methane (CH4) and nitrogen (N2) have similar properties, achieving high-purity enrichment of CH4 from nitrogen-rich low-grade gas is extremely challenging and is of great significance for sustainable development in energy and the environment. This paper reviews the research progress on carbon-based materials, zeolites, and MOFs as adsorbent materials for CH4/N2 separation. It focuses on the relationship between the composition, pore size, surface chemistry of the adsorbents, CH4/N2 selectivity, and CH4 adsorption capacity. The paper also highlights that controlling pore size and atomic-scale composition and optimizing these features for the best match are key directions for the development of new adsorbents. Additionally, it points out that MOFs, which combine the advantages of carbon-based adsorbents and zeolites, are likely to become the most promising adsorbent materials for efficient CH4/N2 separation.
Collapse
Affiliation(s)
- Dongrui Su
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Panpan Chen
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Cunlei Li
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yongfei Yan
- School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Ranlei Zhao
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qingyou Yue
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yupeng Qiao
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
2
|
Verstreken MFK, Chanut N, Magnin Y, Landa HOR, Denayer JFM, Baron GV, Ameloot R. Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. J Am Chem Soc 2024; 146:23633-23648. [PMID: 39162369 DOI: 10.1021/jacs.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adsorptive separations by nanoporous materials are major industrial processes. The industrial importance of solid adsorbents is only expected to grow due to the increased focus on carbon dioxide capture technology and energy-efficient separations. To evaluate the performance of an adsorbent and design a separation process, the adsorption thermodynamics and kinetics must be known. However, although diffusion kinetics determine the maximum production rate in any adsorption-based separation, this aspect has received less attention due to the challenges associated with conducting diffusion measurements. These challenges are exacerbated in the study of shaped adsorbents due to the presence of porosity at different length scales. As a result, adsorbent selection typically relies mainly on adsorption properties at equilibrium, i.e., uptake capacity, selectivity and adsorption enthalpy. In this Perspective, based on an extensive literature review on mass transfer of CO2 in nanoporous adsorbents, we discuss the importance and limitations of measuring diffusion in nanoporous materials, from the powder form to the adsorption bed, considering the nature of the process, i.e., equilibrium-based or kinetic-based separations. By highlighting the lack of and discrepancies between published diffusivity data in the context of CO2 capture, we discuss future challenges and opportunities in studying mass transfer across scales in adsorption-based separations.
Collapse
Affiliation(s)
- Margot F K Verstreken
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicolas Chanut
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yann Magnin
- TotalEnergies, OneTech, R&D, CSTJF, Pau 64800, France
| | - Héctor Octavio Rubiera Landa
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Ghasemi F, Alizadeh M, Azamat J, Erfan-Niya H. Understanding the performance of RHO type zeolite membrane for CH 4/N 2 separation based on molecular dynamics and deep neural network methods. J Mol Graph Model 2024; 127:108673. [PMID: 37992551 DOI: 10.1016/j.jmgm.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
This study shows a molecular dynamics (MD) simulation study on the performance of the RHO zeolite membrane for separating nitrogen from methane/nitrogen gas mixtures. The contamination of natural gas, predominantly composed of methane, with nitrogen diminishes its value. Zeolite membranes offer promising prospects for gas separation due to their stability, rigid pore structure, and molecular sieving properties. The study investigates the impact of pressure difference (up to 30 MPa), feed composition, and membrane thickness on the separation rate at a system temperature of 298 K. Results demonstrate that the RHO zeolite membrane exhibits high permeability and selectivity for N2 separation, surpassing the upper limit defined by Robson with a maximum permeability of 2.14 × 105 GPU (Gas Permeation Units). Exceptional selectivity of N2 over CH4 molecules is observed. Additionally, altering the feed composition and membrane thickness positively influences the membrane's separation performance, thereby enhancing its efficiency. The findings contribute to the advancement of separation technologies, providing valuable insights into the potential application of zeolite membranes for efficient N2 separation from CH4/N2 gas mixtures in natural gas processing. Furthermore, the study explores the use of Deep Neural Network (DNN) models to predict the membrane's performance under diverse operating conditions. The DNN models, trained using simulation data from MD simulations, exhibit high accuracy with a coefficient of determination (R2) exceeding 0.9, ensuring reliable predictions. The integration of DNN models facilitates the optimization of zeolite membrane-based gas separation systems, improving their design and operation.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Mahdi Alizadeh
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Jafar Azamat
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
4
|
Guo P, Ying Y, Liu D. One Scalable and Stable Metal-Organic Framework for Efficient Separation of CH 4/N 2 Mixture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7338-7344. [PMID: 38301114 DOI: 10.1021/acsami.3c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Separating CH4 from coal bed methane is of great importance but challenging. Adsorption-based separation often suffers from low selectivity, poor stability, and difficulty to scale up. Herein, a stable and scalable metal-organic framework [MOF, CoNi(pyz-NH2)] with multiple CH4 binding sites was reported to efficiently separate the CH4/N2 mixture. Due to its suitable pore size and multiple CH4 binding sites, it exhibits excellent CH4/N2 selectivity (16.5) and CH4 uptake (35.9 cm3/g) at 273 K and 1 bar, which is comparable to that of the state-of-the-art MOFs. Theoretical calculations reveal that the high density of open metal sites and polar functional groups in the pores provide strong affinity to CH4 than to N2. Moreover, CoNi(pyz-NH2) displays excellent structural stability and can be scale-up synthesized (22.7 g). This work not only provides an excellent adsorbent but also provides important inspiration for the future design and preparation of porous adsorbents for separations.
Collapse
Affiliation(s)
- Pengtao Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunpan Ying
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Mousavi SH, Chen K, Yao J, Zavabeti A, Liu JZ, Li GK. Screening of Alkali Metal-Exchanged Zeolites for Nitrogen/Methane Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1277-1287. [PMID: 36626709 DOI: 10.1021/acs.langmuir.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Methane (CH4) is the primary component of natural gas and must be purified to a certain level before it can be used as pipeline gas or liquified natural gas (LNG). In particular, nitrogen (N2), a common contaminant in natural gas needs to be rejected to increase the heating value of the gas and meet the LNG product specifications. The development of energy-efficient N2 removal technologies is hampered by N2's inertness and its resemblance to CH4 in terms of kinetic size and polarizability. N2-selective materials are so rare. Here, for the first time, we screened 1425 alkali metal cation exchange zeolites to identify the candidates with the best potential for the separation of N2 from CH4. We discovered a few extraordinary zeolite frameworks capable of achieving equilibrium selectivity toward N2. Particularly, Li+-RRO-3 zeolite with a specific two-dimensional structure demonstrated a selective N2 adsorption capacity of 2.94 mmol/g at 283 K and 1 bar, outperforming the capacity of all known zeolites. Through an ab initio density functional theory study, we found that the five-membered ring of the RRO framework is the most stable cationic site for Li+, and this Li+ can interact with multiple N2 molecules but only one CH4, revealing the mechanism for the high capacity and selectivity of N2. This work suggests promising adsorbents to enable N2 rejection from CH4 in the gas industry without going for energy-intensive cryogenic distillations.
Collapse
Affiliation(s)
- Seyed Hesam Mousavi
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kaifei Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jie Yao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
7
|
Zhou Y, Yuan Y, Cong S, Liu X, Wang Z. N2-selective adsorbents and membranes for natural gas purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Stevens K, Thamwattana N, Tran-Duc T. Continuum Modeling with Functional Lennard-Jones Parameters for Methane Storage inside Various Carbon Nanostructures. ACS OMEGA 2022; 7:29773-29786. [PMID: 36061669 PMCID: PMC9434623 DOI: 10.1021/acsomega.2c02485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 06/03/2023]
Abstract
Methane capture and storage are of particular importance for the development of new technology to reduce the effects of climate change and global warming. Carbon-based nanomaterials are among several porous nanomaterials proposed as potential candidates for methane storage. In this paper, we adopt a new continuum approach with functional Lennard-Jones parameters to provide interaction energies for methane inside carbon nanostructures, namely fullerenes, nanotube bundles, and nanocones. This study provides a significant improvement to previous continuum modeling approaches using the Lennard-Jones potential.
Collapse
|
10
|
Yuan T, Sarkisov L. Lattice Model of Fluid Transport in Mixed Matrix Membranes. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianmu Yuan
- Department of Chemical Engineering The University of Manchester Manchester M1 3AL UK
| | - Lev Sarkisov
- Department of Chemical Engineering The University of Manchester Manchester M1 3AL UK
| |
Collapse
|
11
|
Chang M, Wang F, Wei Y, Yang Q, Wang J, Liu D, Chen J. Separation of
CH
4
/
N
2
by an
Ultra‐Stable Metal‐Organic
Framework with the Highest Breakthrough Selectivity. AIChE J 2022. [DOI: 10.1002/aic.17794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Miao Chang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Fei Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yan Wei
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Qingyuan Yang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jie‐Xin Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Dahuan Liu
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
12
|
Sholl DS, Lively RP. Exemplar Mixtures for Studying Complex Mixture Effects in Practical Chemical Separations. JACS AU 2022; 2:322-327. [PMID: 35252982 PMCID: PMC8889604 DOI: 10.1021/jacsau.1c00490] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Materials and processes for chemical separations must be used in complex environments to have an impact in many practical settings. Despite these complexities, much research on chemical separations has focused on idealized chemical mixtures. In this paper, we suggest that research communities for specific chemical separations should develop well-defined exemplar mixtures to bridge the gap between fundamental studies and practical applications and we provide a hierarchical framework of chemical mixtures for this purpose. We illustrate this hierarchy with examples, including CO2 capture, capture of uranium from seawater, and separations of mixtures from electrocatalytic CO2 reactions, among others. We conclude with four recommendations for the research community to accelerate the development of innovative separations strategies for pressing real-world challenges.
Collapse
Affiliation(s)
- David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Ryan P. Lively
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
13
|
|
14
|
Zhang X, Shang H, Yang J, Li L, Li J. Nitrogen rejection from low quality natural gas by pressure swing adsorption experiments and simulation using dynamic adsorption isotherms. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Characterization of size-selective kinetic-based Ba-ETS-4 titanosilicate for nitrogen/methane separation: Chlorine-enhanced steric effects. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zheng F, Chen L, Chen R, Zhang Z, Yang Q, Yang Y, Su B, Ren Q, Bao Z. A robust two–dimensional layered metal–organic framework for efficient separation of methane from nitrogen. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wang Q, Yu Y, Li Y, Min X, Zhang J, Sun T. Methane separation and capture from nitrogen rich gases by selective adsorption in microporous Materials: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Liang S, He B, Qiu S, Zhang Y, Zhang W, Guo M, Cheng F, Zhang M. Novel insight into composite packing of copper modified adsorbents for synergistically capturing H2S&HCl in low-temperature anaerobic environment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Cheng H, Wang Q, Meng L, Sheng P, Zhang Z, Ding M, Gao Y, Bai J. Formation of a N/O/F-Rich and Rooflike Cluster-Based Highly Stable Cu(I/II)-MOF for Promising Pipeline Natural Gas Upgrading by the Recovery of Individual C 3H 8 and C 2H 6 Gases. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40713-40723. [PMID: 34405673 DOI: 10.1021/acsami.1c11971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the ultralow amounts of C3H8 and C2H6 gases, to design and synthesize water-stable MOFs that are promising for real-world efficient pipeline natural gas (NG) upgrading by the recovery of individual C3H8 and C2H6 gases is still a great challenge. Here, a N/O/F heteroatom-rich and rooflike [Cu(II)4Cu(I)2(COO)4(tetrazolyl)6] cluster-based ultra-microporous tsi-MOF (SNNU-Bai68) was afforded as a multiple heteroatom-rich and curved-surface-shaped cluster-based ultra-microporous MOF and the first porous MOF based upon such rooflike [Cu(II)xCu(I)y(tetrazolyl)z](2x+y-z)+ cluster. In SNNU-Bai68, the rooflike cluster was further assembled into a 1D chain secondary building block (SBB), which led to a high density of accessible potential adsorptive sites. Very interestingly, it exhibited the most promising balance of high gas adsorption uptakes at 0.01, 0.03, and 0.05 bar, high C3H8/CH4, C3H8/C2H6, and C2H6/CH4 adsorption selectivities, moderate adsorption enthalpies, and high water and chemical stability for pipeline natural gas upgrading by the recovery of individual C3H8 and C2H6 gases, which was further confirmed by the breakthrough experiments of the gas mixtures with/without 74% RH. Furthermore, the SC-XRD and GCMC studies revealed that the successful separation of C3H8, C2H6, and CH4 gases in SNNU-Bai68 is due to different synergistic effects of H-bonds between the frameworks at three adsorptive sites around each rooflike cluster and those different gas molecules, which were initially described systematically by the number of H atoms from the gas molecules, the total number of H-bonds within the synergistic H-bonds, and the binding energy of the framework at an adsorption site toward the gas molecules. In addition, this work may provide a method for the construction of a multiple heteroatom-rich and curved-surface-shaped cluster-based ultra-microporous MOF as a novel approach to build MOFs with polar pore surfaces, suitable pore sizes, and unique pore shapes to maximize the synergistic H-bonds between the framework and guests.
Collapse
Affiliation(s)
- Hongtao Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Qian Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Liuli Meng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Pan Sheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zonghui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Min Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yajun Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Junfeng Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
20
|
Demir H, Keskin S. Zr-MOFs for CF 4/CH 4, CH 4/H 2, and CH 4/N 2 separation: towards the goal of discovering stable and effective adsorbents. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:627-642. [PMID: 34381619 PMCID: PMC8327127 DOI: 10.1039/d1me00060h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Zirconium metal-organic frameworks (MOFs) can be promising adsorbents for various applications as they are highly stable in different chemical environments. In this work, a collection of Zr-MOFs comprised of more than 100 materials is screened for CF4/CH4, CH4/H2, and CH4/N2 separations using atomistic-level simulations. The top three MOFs for the CF4/CH4 separation are identified as PCN-700-BPDC-TPDC, LIFM-90, and BUT-67 exhibiting CF4/CH4 adsorption selectivities of 4.8, 4.6, and 4.7, CF4 working capacities of 2.0, 2.0, and 2.1 mol kg-1, and regenerabilities of 85.1, 84.2, and 75.7%, respectively. For the CH4/H2 separation, MOF-812, BUT-67, and BUT-66 are determined to be the top performing MOFs demonstrating CH4/H2 selectivities of 61.6, 36.7, and 46.2, CH4 working capacities of 3.0, 4.1, and 3.4 mol kg-1, and CH4 regenerabilities of 70.7, 82.7, and 74.7%, respectively. Regarding the CH4/N2 separation, BUT-67, Zr-AbBA, and PCN-702 achieving CH4/N2 selectivities of 4.5, 3.4, and 3.8, CH4 working capacities of 3.6, 3.9, and 3.5 mol kg-1, and CH4 regenerabilities of 81.1, 84.0, and 84.5%, in successive order, show the best overall separation performances. To further elucidate the adsorption in top performing adsorbents, the adsorption sites in these materials are analyzed using radial distribution functions and adsorbate density profiles. Finally, the water affinities of Zr-MOFs are explored to comment on their practical use in real gas separation applications. Our findings may inspire future studies probing the adsorption/separation mechanisms and performances of Zr-MOFs for different gases.
Collapse
Affiliation(s)
- Hakan Demir
- Department of Chemical and Biological Engineering, Koc University 34450 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University 34450 Istanbul Turkey
| |
Collapse
|
21
|
|
22
|
Yang S, Chen Y, Huang S, Deng L, Wu Y, Zheng X, Omonov S, Zeng M. Gelatin‐pyrolyzed mesoporous N‐doped carbon supported Pd as high‐performance catalysts for aqueous Heck reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shuai Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Yuli Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Shuaijian Huang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Lu Deng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Yuanyuan Wu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Xiu Zheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Shakhzodjon Omonov
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering Shaoxing University Shaoxing China
| |
Collapse
|