1
|
Chen Z, Wang B, Qi J, Liu T, Feng Y, Liu C, Shen C. Eco-friendly bacterial cellulose/MXene aerogel with excellent photothermal and electrothermal conversion capabilities for efficient separation of crude oil/seawater mixture. Carbohydr Polym 2024; 336:122140. [PMID: 38670764 DOI: 10.1016/j.carbpol.2024.122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Developing novel absorbent materials targeting high-efficiency, low-energy-consumption, and environmental-friendly oil spill cleanup is still a global issue. Porous absorbents endowed with self-heating function are an attractive option because of that they are able to in-situ heat crude oil and dramatically reduce oil viscosity for efficient remediation. Herein, we facilely prepared an eco-friendly multifunctional bacterial cellulose/MXene aerogel (P-SBC/MXene aerogel) for rapid oil recovery. Thanks to excellent full solar spectrum absorption (average absorbance = 96.6 %), efficient photo-thermal conversion, and superior electrical conductivity (electrical resistance = 36 Ω), P-SBC/MXene aerogel exhibited outstanding photothermal and electrothermal capabilities. Its surface temperature could quickly reach 93 °C under 1.0 kW/m2 solar irradiation and 124 °C under 3.0 V voltage respectively, enabling effective heat transfer toward spilled oil. The produced heat significantly decreased crude oil viscosity, allowing P-SBC/MXene aerogel to rapidly absorb oil. By combining solar heating and Joule heating, P-SBC/MXene aerogel connected to a pump-assisted absorption device was capable of achieving all-weather crude oil removal from seawater (crude oil flux = 630 kg m-2 h-1). More notably, P-SBC/MXene aerogel showed splendid outdoor crude oil separation performance. Based on remarkable crude oil/seawater separation ability, the versatile aerogel provides a promising way to deal with large-area oil spills.
Collapse
Affiliation(s)
- Zhenfeng Chen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bo Wang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiahuan Qi
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianhui Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuqing Feng
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Yan D, Yin K, He Y, Liu Y, Wang L, Deng Q, He J, Awan SU, Khalil ASG. Recent advances in functional micro/nanomaterials for removal of crude oil via thermal effects. NANOSCALE 2024; 16:7341-7362. [PMID: 38511991 DOI: 10.1039/d4nr00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Crude oil is one of the most widely used energy and industrial raw materials that is crucial to the world economy, and is used to produce various petroleum products. However, crude oil often spills during extraction, transportation and use, causing negative impacts on the environment. Thus, there is a high demand for products to remediate leaked crude oil. Among them, oleophilic and hydrophobic adsorbents can absorb crude oil through thermal effects and are research hotspots. In this review, we first present an overview of wettability theory, the heating principles of various thermal effects, and the theory of reducing crude oil viscosity by heating. Then we discuss adsorbents based on different heating methods including the photothermal effect, Joule heating effect, alternating magnetic field heating effect, and composite heating effect. Preparation methods and oil adsorption performance of adsorbents are summarized. Finally, the advantages and disadvantages of various heating methods are briefly summarized, as well as the prospects for future research.
Collapse
Affiliation(s)
- Duanhong Yan
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yuchun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Yao Liu
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Saif Ullah Awan
- Department of Electrical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 54000, Pakistan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria, Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
3
|
Sutar RS, Latthe SS, Gharge NB, Gaikwad PP, Jundle AR, Ingole SS, Ekunde RA, Nagappan S, Park KH, Bhosale AK, Liu S. Facile Approach to Fabricate a High-Performance Superhydrophobic PS/OTS Modified SS Mesh for Oil-Water Separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Wu P, Luo Q, Zhang X, He J, Liu C, Jiang W. Universal Rapid Demulsification by Vacuum Suction Using Superamphiphilic and Underliquid Superamphiphobic Polyurethane/Diatomite Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24775-24786. [PMID: 35588149 DOI: 10.1021/acsami.2c03967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A process for universal rapid demulsification by vacuum suction using an as-prepared superamphiphilic and underliquid superamphiphobic polyurethane (PU)/diatomite composite has been developed and is used to demulsify kerosene-in-water and water-in-kerosene emulsions with and without a surfactant. The results show that the demulsification rate of all the emulsions exceeds 98.5% in long-term operation, with a stable demulsification speed exceeding 0.303 L/m2 min. When a superhydrophobic channel for separation is added, the oil/water separation efficiency exceeds 99.0%, and the final products are qualified oil and water. This attractive universal demulsification capability of PU/diatomite originates from its underliquid superamphiphobicity, which attracts a continuous phase to form a stable liquid film and thus repels dispersed phase droplets, which have a similar interaction with the surface but are much less abundant. The vacuum forces emulsion droplets into the microstructure of the PU/diatomite cake, where they are compressed, coalesce, and finally demulsified. This observed mechanism suggests a promising strategy to avoid the negative effects of oil fouling in demulsification and achieve large-scale universal continuous rapid demulsification.
Collapse
Affiliation(s)
- Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065 P. R. China
| | - Qiuxian Luo
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065 P. R. China
| | - Xingyang Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065 P. R. China
| | - Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065 P. R. China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065 P. R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065 P. R. China
| |
Collapse
|
5
|
Facile Construction and Fabrication of a Superhydrophobic and Super Oleophilic Stainless Steel Mesh for Separation of Water and Oil. NANOMATERIALS 2022; 12:nano12101661. [PMID: 35630883 PMCID: PMC9147946 DOI: 10.3390/nano12101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
The fluoride-free fabrication of superhydrophobic materials for the separation of oil/water mixtures has received widespread attention because of frequent offshore oil exploration and chemical leakage. In recent years, oil/water separation materials, based on metal meshes, have drawn much attention, with significant advantages in terms of their high mechanical strength, easy availability, and long durability. However, it is still challenging to prepare superhydrophobic metal meshes with high-separation capacity, low costs, and high recyclability for dealing with oil–water separation. In this work, a superhydrophobic and super oleophilic stainless steel mesh (SSM) was successfully prepared by anchoring Fe2O3 nanoclusters (Fe2O3-NCs) on SSM via the in-situ flame synthesis method and followed by further modification with octadecyltrimethoxysilane (OTS). The as-prepared SSM with Fe2O3-NCs and OTS (OTS@Fe2O3-NCs@SSM) was confirmed by a field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and X-ray diffractometer (XRD). The oil–water separation capacity of the sample was also measured. The results show that the interlaced and dense Fe2O3-NCs, composed of Fe2O3 nanoparticles, were uniformly coated on the surface of the SSM after the immerging-burning process. Additionally, a compact self-assembled OTS layer with low surface energy is coated on the surface of Fe2O3-NCs@SSM, leading to the formation of OTS@Fe2O3-NCs@SSM. The prepared OTS@Fe2O3-NCs@SSM shows excellent superhydrophobicity, with a water static contact angle of 151.3°. The separation efficiencies of OTS@Fe2O3-NCs@SSM for the mixtures of oil/water are all above 98.5%, except for corn oil/water (97.5%) because of its high viscosity. Moreover, the modified SSM exhibits excellent stability and recyclability. This work provides a facile approach for the preparation of superhydrophobic and super oleophilic metal meshes, which will lead to advancements in their large-scale applications on separating oil/water mixtures.
Collapse
|
6
|
Recent Advances in Functional Materials for Wastewater Treatment: From Materials to Technological Innovations. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The growing concerns about climate changes and environmental pollution have galvanized considerable research efforts in recent years to develop effective and innovative remediation technologies for contaminated soils and water caused by industrial and domestic activities. In this context, the establishment of effective treatment methods for wastewater has been critically important and urgent, since water pollution can take place on a very large scale (e.g., oceanic oil spills) and have massive impacts on ecosystems and human lives. Functional materials play a central role in the advancement of these technologies due to their highly tunable properties and functions. This article focuses on reviewing the recent progress in the application of various functional materials for wastewater treatment. Our literature survey is first concentrated on new modification methods and outcomes for a range of functional materials which have been actively investigated in recent years, including biofilm carriers, sand filters, biomass, biopolymers, and functional inorganic materials. Apart from the development of modified functional materials, our literature survey also covers the technological applications of superhydrophilic/superhydrophobic meshes, hybrid membranes, and reusable sponges in oil–water separation. These devices have gained significantly enhanced performance by using new functional materials as the key components (e.g., coating materials), and are therefore highly useful for treatment of oily wastewater, such as contaminated water collected from an oil spill site or oil–water emulsions resulting from industrial pollution. Based on our state-of-the-art literature review, future directions in the development and application of functional materials for wastewater treatment are suggested.
Collapse
|
7
|
Wang Q, Xie D, Chen J, Luo J, Chen G, Yu M. Straightforward fabrication of robust and healable superhydrophobic steel mesh based on polydimethylsiloxane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Wang
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center Guangzhou China
| | - Dong Xie
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center Guangzhou China
| | - Junjia Chen
- Institute of Biological and Medical Engineering Guangdong Academy of Sciences, Guangdong Biomaterials Engineering Technology Research Center Guangzhou China
| | - Jie Luo
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan University Foshan China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| | - Mingguang Yu
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies Foshan University Foshan China
| |
Collapse
|
8
|
Ghasemlou M, Le PH, Daver F, Murdoch BJ, Ivanova EP, Adhikari B. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36558-36573. [PMID: 34284587 DOI: 10.1021/acsami.1c09959] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of superhydrophobic surfaces in a broad range of applications is receiving a great deal of attention due to their numerous functionalities. However, fabricating these surfaces using low-cost raw materials through green and fluorine-free routes has been a bottleneck in their industrial deployment. This work presents a facile and environmentally friendly strategy to prepare mechanically robust superhydrophobic surfaces with engineered lotus leaf mimetic multiscale hierarchical structures via a hybrid route combining soft imprinting and spin-coating. Direct soft-imprinting lithography onto starch/polyhydroxyurethane/cellulose nanocrystal (SPC) films formed micro-scaled features resembling the pillar architecture of lotus leaf. Spin-coating was then used to assemble a thin layer of low-surface-energy poly(dimethylsiloxane) (PDMS) over these microstructures. Silica nanoparticles (SNPs) were grafted with vinyltriethoxysilane (VTES) to form functional silica nanoparticles (V-SNPs) and subsequently used for the fabrication of superhydrophobic coatings. A further modification of PDMS@SPC film with V-SNPs enabled the interlocking of V-SNPs microparticles within the cross-linked PDMS network. The simultaneous introduction of hierarchical microscale surface topography, the low surface tension of the PDMS layer, and the nanoscale roughness induced by V-SNPs contributed to the fabrication of a superhydrophobic interface with a water contact angle (WCA) of ∼150° and a sliding angle (SA) of <10°. The PDMS/V-SNP@SPC films showed an ∼52% reduction in water vapor transmission rate compared to that of uncoated films. These results indicated that the coating served as an excellent moisture barrier and imparted good hydrophobicity to the film substrate. The coated film surfaces were able to withstand extensive knife scratches, finger-rubbing, jet-water impact, a sandpaper-abrasion test for 20 cycles, and a tape-peeling test for ∼10 repetitions without losing superhydrophobicity, suggesting superior mechanical durability. Self-cleaning behavior was also demonstrated when the surfaces were cleared of artificial dust and various food liquids. The green and innovative approach presented in the current study can potentially serve as an attractive new tool for the development of robust superhydrophobic surfaces without adverse environmental consequences.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, Victoria 3000, Australia
| | - Phuc H Le
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, Victoria 3000, Australia
| | - Fugen Daver
- School of Engineering, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, Victoria 3000, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, Victoria 3000, Australia
| | - Benu Adhikari
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
9
|
Robust bio-inspired superhydrophilic and underwater superoleophobic membranes for simultaneously fast water and oil recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|