1
|
Gotad PS, Bochenek C, Wesdemiotis C, Jana SC. Separation of Perfluorooctanoic Acid from Water Using Meso- and Macroporous Syndiotactic Polystyrene Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10208-10216. [PMID: 38695840 DOI: 10.1021/acs.langmuir.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Per- and polyfluoroalkyl substances are an emerging class of contaminants that are environmentally persistent, bioaccumulative, and noxious to human health. Among these, perfluorooctanoic acid (PFOA) molecules are widely found in ground and surface water sources. A novel high surface area, meso- and macroporous syndiotactic polystyrene (sPS) wet gel is used in this work as the adsorbent of PFOA molecules from water at environmentally relevant PFOA concentrations (≤1 μg/L) and cleanse water to below the U.S. EPA's 2023 health advisory limit of 4 parts per trillion (ppt). The sigmoidal shape of the PFOA adsorption isotherm indicates a two-step adsorption mechanism attributed to the strong affinity of PFOA molecules for the sPS surface and molecular aggregation at solid-liquid interfaces or within the pores of the sPS wet gel. The adsorption kinetics and the effects of sPS wet gel porosity, pore size, and pore volume on the removal efficiency are reported. The adsorption kinetics is seen to be strongly dependent on pore size and pore volume.
Collapse
Affiliation(s)
- Pratik S Gotad
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio 44304, United States
| | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44304, United States
| | - Sadhan C Jana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Yao F, Zhu P, Chen J, Li S, Sun B, Li Y, Zou M, Qi X, Liang P, Chen Q. Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim Acta 2023; 190:256. [PMID: 37301779 DOI: 10.1007/s00604-023-05838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
In recent years, nanomaterials have attracted the research intervention of experts in the fields of catalysis, energy, biomedical testing, and biomedicine with their unrivaled optical, chemical, and biological properties. From basic metal and oxide nanoparticles to complex quantum dots and MOFs, the stable preparation of various nanomaterials has always been a struggle for researchers. Microfluidics, as a paradigm of microscale control, is a remarkable platform for online stable synthesis of nanomaterials with efficient mass and heat transfer in microreactors, flexible blending of reactants, and precise control of reaction conditions. We describe the process of microfluidic preparation of nanoparticles in the last 5 years in terms of microfluidic techniques and the methods of microfluidic manipulation of fluids. Then, the ability of microfluidics to prepare different nanomaterials, such as metals, oxides, quantum dots, and biopolymer nanoparticles, is presented. The effective synthesis of some nanomaterials with complex structures and the cases of nanomaterials prepared by microfluidics under extreme conditions (high temperature and pressure), the compatibility of microfluidics as a superior platform for the preparation of nanoparticles is demonstrated. Microfluidics has a potent integration capability to combine nanoparticle synthesis with real-time monitoring and online detection, which significantly improves the quality and production efficiency of nanoparticles, and also provides a high-quality ultra-clean platform for some bioassays.
Collapse
Affiliation(s)
- Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Pengpeng Zhu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Junjie Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Suyang Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yunfeng Li
- College of Information Engineering, China Jiliang University, 310018, Hangzhou, 310000, People's Republic of China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
3
|
Dayarian S, Majedi Far H, Yang L. Macroporous Polyimide Aerogels: A Comparison between Powder Microparticles Synthesized via Wet Gel Grinding and Emulsion Processes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1804-1814. [PMID: 36706272 PMCID: PMC9910053 DOI: 10.1021/acs.langmuir.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/14/2023] [Indexed: 06/18/2023]
Abstract
It is noteworthy to mention that synthesizing the polyimide aerogel powder, which is carried out in this study, benefits from two advantages: (i) the powder particles can be used for some specific applications where the monolith is not suitable and (ii) there is a possibility to investigate how a polyimide aerogel monolith can be made through the polyimide powder to reduce its cost and cycle time. In this study, two straightforward methods, wet gel grinding and emulsion, are introduced to prepare polyimide aerogel powders using ambient pressure drying. The microscopic properties of interest, including skeletal and porous structures, microparticle size and assembly, combined with macroscopic properties such as thermal stabilities and conductivities (0.039 W/m·K), confirm that the fabricated microparticles with a size in the range of 7-20 μm and porosity in the range of 65-85% are thermally stable up to 500 °C.
Collapse
Affiliation(s)
- Shima Dayarian
- Department
of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, United
Kingdom
| | - Hojat Majedi Far
- Blueshift
Materials Inc., Spencer, Massachusetts01562, United States
| | - Liu Yang
- Department
of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, United
Kingdom
| |
Collapse
|
4
|
Gotad PS, Kafle N, Miyoshi T, Jana SC. Meso- and Macroporous Polymer Gels for Efficient Adsorption of Block Copolymer Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13558-13568. [PMID: 36279503 DOI: 10.1021/acs.langmuir.2c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An understanding of surfactant adsorption at solid-liquid interfaces is important for solving many technological problems. This work evaluates surfactant adsorption abilities of high surface area (200-600 m2/g), high porosity (>90%), hierarchically structured open pore polymer gels. Specifically, the interactions of a nonionic block copolymer surfactant, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), with three polymer gels, namely, syndiotactic polystyrene (sPS), polyimide (PI), and polyurea (PUA) offering different surface energy values, are evaluated at surfactant concentrations below and well above the critical micelle concentration (CMC). Two distinct surfactant adsorption behaviors are identified from the surface tension and nuclear magnetic resonance data. At concentrations below CMC, the surfactant molecules adsorb as a monolayer on polymer strands, inferred from the Langmuir-type adsorption isotherm, with the adsorbed amount increasing with the specific surface area of the polymer gel. The study reports for the first time that the gels show a strong surfactant adsorption above CMC, with the effective surfactant concentration in the gel reaching several folds of the CMC values. The effective surfactant concentration in the gel is analyzed using surfactant micelle size, polymer surface energy, and pore size of the gel. The findings of this study may have strong implications in liquid-liquid separation problems and in the removal of small dye molecules, heavy metal ions, and living organisms from aqueous streams.
Collapse
Affiliation(s)
- Pratik S Gotad
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Navin Kafle
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Toshikazu Miyoshi
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Sadhan C Jana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| |
Collapse
|
5
|
Du Y, Gou F, Gao D, Liu Z, Shao L, Qi C. Palladium nanoparticles encapsulated in polyimide nanofibers: An efficient and recyclable catalyst for coupling reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Faliang Gou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Danning Gao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Zhifeng Liu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| |
Collapse
|