1
|
Ren M, Zhao B, Li C, Fei Y, Wang X, Fan L, Hu T, Zhang X. Defect-engineered indium-organic framework displays the higher CO 2 adsorption and more excellent catalytic performance on the cycloaddition of CO 2 with epoxides under mild conditions. Mol Divers 2024:10.1007/s11030-024-10956-z. [PMID: 39141206 DOI: 10.1007/s11030-024-10956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(μ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(μ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.
Collapse
Affiliation(s)
- Meiyu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|
2
|
Liu J, Zhang B, Jian P, Shi J. Experimental and Theoretical Investigation of Interfacial Engineering in Fe 2O 3/NiFe 2O 4 Heterostructures toward the Cycloaddition of CO 2 with Styrene Oxide. Inorg Chem 2024; 63:12981-12991. [PMID: 38951131 DOI: 10.1021/acs.inorgchem.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The chemical fixation of CO2 into epoxides for the synthesis of cyclic carbonates is an appealing solution to both reduce global CO2 emission and produce fine chemicals, but it is still a prime challenge to develop a low-cost, earth-abundant, yet efficient solid catalyst. Herein, Fe2O3/NiFe2O4 heterostructures are facilely constructed for the highly efficient cycloaddition of CO2 with styrene oxide (SO) to produce styrene carbonate (SC). Both experimental findings and density functional theory (DFT) calculations substantiate the prominent electron transfer and charge redistribution within the heterointerfaces between the biphasic components, which induce a unique interfacial microenvironment that can facilitate the adsorption and activation of SO. This endows the biphasic catalyst with a substantially higher reactivity than the individual components. This study sheds new insights into the establishment of heterostructured catalysts consisting of transitional metal oxides for the high-efficiency production of SC from the cycloaddition of CO2 with SO.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Shi
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
3
|
Elahimehr Z, Nemati F, Rangraz Y. N/Se co-doped porous carbon catalyst derived from a deep eutectic solvent and chitosan as green precursors: Investigation of catalytic activity for metal-free oxidation of alcohols. Int J Biol Macromol 2024; 273:133007. [PMID: 38857729 DOI: 10.1016/j.ijbiomac.2024.133007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Heteroatom-doped porous carbon-based materials with high surface area compared to their metal-based homologs are considered environmentally friendly and ideal catalysts for organic reactions. In this paper, a new method for the convenient fabrication, cost-effective, and high efficiency of nitrogen/selenium co-doped porous carbon-based catalysis (marked as N/SePC-T) was designed. The N/SePC-T catalysts were created from the direct pyrolysis of a eutectic solvent containing choline chloride/urea as the nitrogen-rich carbon source, selenium dioxide as a source of heteroatom and chitosan as a secondary carbon source in different temperatures (T). The efficacy of the carbonization temperature on the pore structure, morphology, and catalytic activity of the N/SePC-T materials was investigated and displayed, the N/SePC-900 (having a surface area of 562.01 m2/g and total pore volume of 0.2351 cm3 g-1) has the best performance. The morphology, structure, and physicochemical properties of N/SePC-900 were characterized using various analyses including XRD, TEM, TGA, FE-SEM, EDX, FT-IR, XPS, and Raman. The optimized N/SePC-900 catalyst indicated excellent catalytic performance in the oxidation of benzylalcohols to corresponding aldehydes in very mild conditions.
Collapse
Affiliation(s)
| | | | - Yalda Rangraz
- Department of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
4
|
Huang GM, Pan LX, Li SM, Ma MX, Gui LC, Ni QL. An Indium metal-organic framework with a two-fold-interpenetrating structure for the efficient conversion of CO2. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Kumari K, Choudhary P, Sharma D, Krishnan V. Amine-Functionalized Graphitic Carbon Nitride as a Sustainable Metal-free Catalyst for Knoevenagel Condensation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kamlesh Kumari
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
6
|
Lan DH, Chen K, Zhu HJ, Shen J, Wu SS, Au CT, Yi B, Yin S. Hexamethylenetetramine Complexes as Easy-to-Handle and Efficient Lewis Acid–Base Heterogeneous Catalysts for Coupling of CO 2 under Mild Conditions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong-Hui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Kun Chen
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Heng-Jun Zhu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Jing Shen
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Shui-Sheng Wu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Chak-Tong Au
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China
| | - ShuangFeng Yin
- Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
7
|
A facile and green synthesis of cobalt phthalocyanine-conjugated multiwall carbon nanotube by the Ugi reaction: As an efficient CO2 fixation catalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Ma J, Wu Y, Yan X, Chen C, Wu T, Fan H, Liu Z, Han B. Efficient synthesis of cyclic carbonates from CO 2 under ambient conditions over Zn(betaine) 2Br 2: experimental and theoretical studies. Phys Chem Chem Phys 2022; 24:4298-4304. [PMID: 35107469 DOI: 10.1039/d1cp05553d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is very interesting to synthesize high value-added chemicals from CO2 under mild conditions with low energy consumption. Here, we report that a novel catalyst, Zn(betaine)2Br2, can efficiently promote the cycloaddition of CO2 with epoxides to synthesize cyclic carbonates under ambient conditions (30 °C, 1 atm). DFT calculations provide important insights into the mechanism, particularly the unusual synergistic catalytic action of Zn2+, Br- and NR4+, which is the critical factor for the outstanding performance of Zn(betaine)2Br2. The unique features of the catalyst are that it is cheap, green and very easy to prepare.
Collapse
Affiliation(s)
- Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Wang X, Yang L, Fu G, Chen Y, Yang C, Sun J. Experimental and theoretical investigation for the cycloaddition of carbon dioxide to epoxides catalyzed by potassium and boron co-doped carbon nitride. J Colloid Interface Sci 2021; 609:523-534. [PMID: 34802754 DOI: 10.1016/j.jcis.2021.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Much endeavor has been devoted to efficient heterogeneous catalysts for carbon dioxide (CO2) conversion to high-value chemicals. Meanwhile, the cycloaddition of CO2 to epoxides is considered as a green and atom-economy reaction to produce cyclic carbonates. Herein, a series of K, B co-doped CN with various doping contents (K, B-CN-X) were developed by simple one-step calcination of melamine and KBH4. B was confirmed to replace the C site and KN bond was formed, which was verified by XPS (X-ray photoelectron spectroscopy) and DFT (density functional theory) calculation. Particularly, K, B-CN-4 displayed the optimal catalytic performance in the presence of Bu4NBr (tetrabutylammonium bromide) cocatalyst for the CO2 cycloaddition with propylene oxide. Besides, K, B-CN-4/Bu4NBr catalyst exhibited good substrate versatility to various epoxides and excellent recycling performance. According to the DFT calculation on CO2 adsorption and experimental results, K, B-CN-4 presented satisfactory catalytic activity due to the enhanced CO2 adsorption after K and B dopings then the possible reaction mechanism was proposed. The promising K, B-CN-X catalyst presented an attractive application due to the simple, eco-friendly synthesis route for the efficient fixation of CO2.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Li Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Gang Fu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
10
|
Chang T, Li X, Hao Y, Kang L, Tian T, Fu X, Zhu Z, Panchal B, Qin S. Pyrene-based ammonium bromides combined with g-C 3N 4 for the synergistically enhanced fixation reaction of CO 2 and epoxides. RSC Adv 2021; 11:30222-30228. [PMID: 35480243 PMCID: PMC9041114 DOI: 10.1039/d1ra05328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
A new type of pyrene-based ammonium bromides (PABs) was synthesized via the reaction of bromomethyl pyrene and tertiary amines with different alkyl chains combined with graphitic carbon nitride (g-C3N4) through π-π stacking interactions. The new pyrene-based ammonium bromides were investigated both in homogenous phase and heterogeneous phase combining with g-C3N4 for the CO2 fixation reaction of epoxides under mild conditions. Obviously, the combination was proved to be an efficient system for the conversion of epoxides. The interaction between g-C3N4 and PABs was confirmed by quantum chemical calculations. g-C3N4/Py-C12 exhibited an excellent yield of cyclic carbonates (above 93%) at 80 °C, atmospheric pressure and solvent-free conditions. A preliminary kinetic study was performed using g-C3N4/Py-C12 and the activation energy was calculated to be 61.5 kJ mol-1.
Collapse
Affiliation(s)
- Tao Chang
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
- Key Laboratory of Heterocyclic Compounds of Hebei Province, Handan College Handan 056005 Hebei China
| | - Xiaopeng Li
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Yongjing Hao
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Lianwei Kang
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Tian Tian
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Xiying Fu
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Zheng Zhu
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Balaji Panchal
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| | - Shenjun Qin
- Key Laboratory of CO2 Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering Handan 056038 Hebei China
| |
Collapse
|