1
|
Tuning properties of biomimetic magnetic nanoparticles by combining magnetosome associated proteins. Sci Rep 2019; 9:8804. [PMID: 31217514 PMCID: PMC6584501 DOI: 10.1038/s41598-019-45219-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/04/2019] [Indexed: 11/08/2022] Open
Abstract
The role of magnetosome associated proteins on the in vitro synthesis of magnetite nanoparticles has gained interest, both to obtain a better understanding of the magnetosome biomineralization process and to be able to produce novel magnetosome-like biomimetic nanoparticles. Up to now, only one recombinant protein has been used at the time to in vitro form biomimetic magnetite precipitates, being that a scenario far enough from what probably occurs in the magnetosome. In the present study, both Mms6 and MamC from Magnetococcus marinus MC-1 have been used to in vitro form biomimetic magnetites. Our results show that MamC and Mms6 have different, but complementary, effects on in vitro magnetite nucleation and growth. MamC seems to control the kinetics of magnetite nucleation while Mms6 seems to preferably control the kinetics for crystal growth. Our results from the present study also indicate that it is possible to combine both proteins to tune the properties of the resulting biomimetic magnetites. In particular, by changing the relative ratio of these proteins, better faceted and/or larger magnetite crystals with, consequently, different magnetic moment per particle could be obtained. This study provides with tools to obtain new biomimetic nanoparticles with a potential utility for biotechnological applications.
Collapse
|
2
|
Ma K, Zhao H, Zheng X, Sun H, Hu L, Zhu L, Shen Y, Luo T, Dai H, Wang J. NMR studies of the interactions between AMB-1 Mms6 protein and magnetosome Fe3O4 nanoparticles. J Mater Chem B 2017; 5:2888-2895. [DOI: 10.1039/c7tb00570a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NMR studies demonstrate that, the C-terminal Mms6 undergo conformation change upon magnetosome Fe3O4 crystals binding. The N-terminal hydrophobic packing arranges the DEEVE motifs into a correct assembly and orientation for magnetite crystal recognition.
Collapse
|
3
|
Peigneux A, Valverde-Tercedor C, López-Moreno R, Pérez-González T, Fernández-Vivas MA, Jiménez-López C. Learning from magnetotactic bacteria: A review on the synthesis of biomimetic nanoparticles mediated by magnetosome-associated proteins. J Struct Biol 2016; 196:75-84. [PMID: 27378728 DOI: 10.1016/j.jsb.2016.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
Abstract
Much interest has gained the biomineralization process carried out by magnetotactic bacteria. These bacteria are ubiquitous in natural environments and share the ability to passively align along the magnetic field lines and actively swim along them. This ability is due to their magnetosome chain, each magnetosome consisting on a magnetic crystal enveloped by a lipid bilayer membrane to which very unique proteins are associated. Magnetotactic bacteria exquisitely control magnetosome formation, making the magnetosomes the ideal magnetic nanoparticle of potential use in many technological applications. The difficulty to scale up magnetosome production has triggered the research on the in vitro production of biomimetic (magnetosome-like) magnetite nanoparticles. In this context, magnetosome proteins are being used to mediate such in vitro magnetite precipitation experiments. The present work reviews the knowledgement on the magnetosome proteins thought to have a role on the in vivo formation of magnetite crystals in the magnetosome, and the recombinant magnetosome proteins used in vitro to form biomimetic magnetite. It also summarizes the data provided in the literature on the biomimetic magnetite nanoparticles obtained from those in vitro experiments.
Collapse
Affiliation(s)
- Ana Peigneux
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Carmen Valverde-Tercedor
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Rafael López-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Teresa Pérez-González
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - M A Fernández-Vivas
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain
| | - Concepción Jiménez-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain.
| |
Collapse
|
4
|
Galloway JM, Bird SM, Talbot JE, Shepley PM, Bradley RC, El-Zubir O, Allwood DA, Leggett GJ, Miles JJ, Staniland SS, Critchley K. Nano- and micro-patterning biotemplated magnetic CoPt arrays. NANOSCALE 2016; 8:11738-11747. [PMID: 27221982 DOI: 10.1039/c6nr03330j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Patterned thin-films of magnetic nanoparticles (MNPs) can be used to make: surfaces for manipulating and sorting cells, sensors, 2D spin-ices and high-density data storage devices. Conventional manufacture of patterned magnetic thin-films is not environmentally friendly because it uses high temperatures (hundreds of degrees Celsius) and high vacuum, which requires expensive specialised equipment. To tackle these issues, we have taken inspiration from nature to create environmentally friendly patterns of ferromagnetic CoPt using a biotemplating peptide under mild conditions and simple apparatus. Nano-patterning via interference lithography (IL) and micro-patterning using micro-contact printing (μCP) were used to create a peptide resistant mask onto a gold surface under ambient conditions. We redesigned a biotemplating peptide (CGSGKTHEIHSPLLHK) to self-assemble onto gold surfaces, and mineralised the patterns with CoPt at 18 °C in water. Ferromagnetic CoPt is biotemplated by the immobilised peptides, and the patterned MNPs maintain stable magnetic domains. This bioinspired study offers an ecological route towards developing biotemplated magnetic thin-films for use in applications such as sensing, cell manipulation and data storage.
Collapse
Affiliation(s)
- J M Galloway
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK and School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - S M Bird
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - J E Talbot
- School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL, UK
| | - P M Shepley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - R C Bradley
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Maplin Street, Sheffield, S1 3JD, UK
| | - O El-Zubir
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK and School of Chemistry, University of Newcastle, Chemical Nanoscience Laboratories, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - D A Allwood
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Maplin Street, Sheffield, S1 3JD, UK
| | - G J Leggett
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - J J Miles
- School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL, UK
| | - S S Staniland
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - K Critchley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Nayak S, Zhang H, Liu X, Feng S, Palo P, Nilsen-Hamilton M, Akinc M, Mallapragada S. Protein patterns template arrays of magnetic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra07662a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pattern generation process for growth of magnetite nanoparticles (MNP), using patterns of octadecane thiol and poly(ethylene glycol) to selectively immobilize the biomineralization protein Mms6 and selectively form on the immobilized Mms6.
Collapse
Affiliation(s)
- Srikanth Nayak
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Department of Chemical & Biological Engineering
| | - Honghu Zhang
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Department of Materials Science & Engineering
| | - Xunpei Liu
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Department of Chemical & Biological Engineering
| | - Shuren Feng
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Roy J. Carver Department of Biochemistry
| | - Pierre Palo
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Roy J. Carver Department of Biochemistry
| | - Marit Nilsen-Hamilton
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Roy J. Carver Department of Biochemistry
| | - Mufit Akinc
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Department of Materials Science & Engineering
| | - Surya Mallapragada
- Division of Materials Science and Engineering
- Ames Laboratory
- Ames
- USA
- Department of Chemical & Biological Engineering
| |
Collapse
|