1
|
Kawsar M, Sahadat Hossain M, Akter S, Farhad Ali M, Bahadur NM, Ahmed S. Synthesis and Characterization of Nano-Crystallite Triple Super Phosphate (TSP) from Marine Mollusk Waste: Babylonia japonica, Oliva sayana, and Conasprella bermudensis. ChemistryOpen 2024; 13:e202400174. [PMID: 39248692 PMCID: PMC11625956 DOI: 10.1002/open.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Indexed: 09/10/2024] Open
Abstract
The study aims to synthesize nano-crystallite TSP using renewable, low-cost, waste marine mollusk from three different species such as Babylonia japonica, Oliva sayana, and Conasprella bermudensis. The molar ratio of phosphate to calcium in triple superphosphate [TSP, Ca(H2PO4)2.H2O] significantly impacts its properties and fertilizer performance, in this case, we kept the ratio to 2. Raw TSP has a high phosphate content and lower calcium content. The synthesized TSP was analyzed using various techniques including TGA, XRD, EDX, FT-IR, and SEM. The study utilized multiple XRD model equations to analyze crystallite size (< 100 n m ${\char60 100\hskip0.17em\hskip0.17em{\rm n}{\rm m}}$ ), with all models except the Liner straight-line method providing higher estimates for synthesized TSP. Furthermore, the values for stress (2×107 to 4×107 N/m2), strain (4×10-4 to 9×10-4), as well as energy density (4.54×103 to 16.27×103 J/m3) were also calculated for the synthesized product. However, the preferential growth calculation indicates that (010), (021), and (020) planes are the most thermodynamically stable planes for the growth of the synthesized TSP. Apart from that, FTIR result confirms that CaO, -OH, as well as PO4 3- functional groups are present in the synthesized products. This research suggests that marine mollusks can be utilized as a calcium precursor for P-fertilizer and 60 % phosphoric acid, thereby reducing production costs by eliminating additional dehydrating. Additionally, waste marine mollusk shells could be utilized as an alternative to the production of phosphate-based fertilizer.
Collapse
Affiliation(s)
- Md. Kawsar
- Glass Research DivisionInstitute of Glass & Ceramic Research and TestingBangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka1205Bangladesh
- Department of Applied Chemistry and Chemical EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Sahadat Hossain
- Glass Research DivisionInstitute of Glass & Ceramic Research and TestingBangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka1205Bangladesh
| | - Sumaiya Akter
- Department of Applied Chemistry and Chemical EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Farhad Ali
- Institute of Leather Engineering and TechnologyUniversity of DhakaDhaka1000Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Samina Ahmed
- Glass Research DivisionInstitute of Glass & Ceramic Research and TestingBangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka1205Bangladesh
| |
Collapse
|
2
|
Padunglappisit C, Suwanprateep N, Chaiwerawattana H, Naruphontjirakul P, Panpisut P. An in vitro assessment of biaxial flexural strength, degree of monomer conversion, color stability, and ion release in provisional restorations containing Sr-bioactive glass nanoparticles. Biomater Investig Dent 2023; 10:2265393. [PMID: 38204473 PMCID: PMC10763873 DOI: 10.1080/26415275.2023.2265393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 01/12/2024] Open
Abstract
This study examined the mechanical and chemical properties of an experimental provisional restoration containing Sr-bioactive glass nanoparticles (Sr-BGNPs) compared to commercial provisional materials. The experimental material (TempS10) contained dimethacrylate monomers with added 10 wt% Sr-BGNPs. The degree of monomer conversion (DC) of self-curing (n = 5), biaxial flexural strength (BFS)/modulus (BFM) (n = 5), and color changes (ΔE*00) of materials in red wine (n = 5) were determined. Additionally, ion release (Ca, P, and Sr) in water at 2 weeks was examined (n = 3). The commercial materials tested included polymethyl methacrylate-based provisional material (Unifast) and bis-acrylic materials (Protemp4 and Cooltemp). TempS10 exhibited a comparable degree of monomer conversion (49%) to that of Protemp4 (60%) and Cooltemp (54%) (p > 0.05). The DC of Unifast (81%) was significantly higher than that of other materials (p < 0.05). TempS10 showed a BFS (126 MPa) similar to Cooltemp (102 MPa) and Unifast (123 MPa), but lower than Protemp4 (194 MPa). The immersion time for 2 weeks exhibited no detrimental effect on the strength and modulus of all materials. The highest ΔE*00 at 24 h and 2 weeks was observed with TempS10, followed by Cooltemp, Unifast, and Protemp4. Only TempS10 showed a detectable amount of Ca (0.69 ppm), P (0.12 ppm), and Sr (3.01 ppm). The experimental provisional resin restoration containing Sr-BGNPs demonstrated polymerization and strength comparable to those of bis-acryl provisional restorations but with the added benefit of ion-releasing properties. However, the experimental material demonstrated unsatisfactory color stability.
Collapse
Affiliation(s)
| | | | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
3
|
Seesanong S, Seangarun C, Boonchom B, Laohavisuti N, Chaiseeda K, Boonmee W. Composition and Properties of Triple Superphosphate Obtained from Oyster Shells and Various Concentrations of Phosphoric Acid. ACS OMEGA 2021; 6:22065-22072. [PMID: 34497900 PMCID: PMC8412895 DOI: 10.1021/acsomega.1c02660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
Triple superphosphates [TSPs, Ca(H2PO4)2·H2O] were produced by exothermic reactions of oyster shells and different concentrations of phosphoric acid (10, 20, 30, 40, 50, 60, and 70% w/w) in a molar ratio of 1:2. The percentage yields, P2O5 and CaO contents, metal impurities, and thermal behaviors of all the as-prepared products are dependent on the concentrations of phosphoric acid added during the production processes, which confirm to get the best optimum of 60% w/w phosphoric acid. All the as-prepared products were characterized by several characterization methods [X-ray fluorescence, thermal gravimetric/derivative thermal gravimetric analysis, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy], verifying that all the obtained compounds are TSP that can be used as fertilizers without metal toxic contaminants. From the successful results, the method for TSP production can be applied in the fertilizer industry based on starting waste materials of oyster shells that can replace the use of unsustainable phosphate or calcium minerals obtained from nonliving things.
Collapse
Affiliation(s)
- Somkiat Seesanong
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Chaowared Seangarun
- Advanced
Functional Phosphate Material Research Unit, Department of Chemistry,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Banjong Boonchom
- Advanced
Functional Phosphate Material Research Unit, Department of Chemistry,
School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok10520, Thailand
- Municipal
Waste and Wastewater Management Learning Center, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Nongnuch Laohavisuti
- Department
of Animal Production Technology and Fishery, School of Agricultural
Technology, King Mongkut’s Institute
of Technology Ladkrabang, Bangkok10520, Thailand
| | - Kittichai Chaiseeda
- Organic
Synthesis, Electrochemistry and Natural Product Research Unit (OSEN),
Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok10140, Thailand
| | - Wimonmat Boonmee
- Department
of Biology, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok10520, Thailand
| |
Collapse
|
4
|
Siddiqui HA, Pickering KL, Mucalo MR. Study of biomorphic calcium deficient hydroxyapatite fibres derived from a natural Harakeke( Phormium tenax) leaf fibre template. BIOINSPIRATION & BIOMIMETICS 2020; 16:016015. [PMID: 32987371 DOI: 10.1088/1748-3190/abbc64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The complex structure of natural bio-organic matter has inspired scientists to utilise these as templates to design 'biomorphic materials', which retain the intricate architecture of the materials while acting as a useful bioactive material. Biomorphic hydroxyapatite-based fibres were synthesised usingHarakekeleaf fibre as a template, which constitutes a powerful method for manufacturing bioactive ceramic fibres. Furthermore, in creating the hydroxyapatite-based fibres, a natural source of calcium and phosphate ions (from bovine bone) was utilised to create the digest solution in which the leaf fibres were immersed prior to their calcination to form the inorganic fibres. Chemical, thermogravimetric and microscopic characterisation confirmed that the final product was able to successfully replicate the shape of the fibres and furthermore be transformed into calcium deficient, bone-like hydroxyapatite.
Collapse
Affiliation(s)
- Humair A Siddiqui
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand
- Department of Materials Engineering, Faculty of Chemical & Process Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Kim L Pickering
- School of Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Michael R Mucalo
- School of Science, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|
5
|
|
6
|
Zhang YH, Liu FQ, Zhu CQ, Zhang XP, Wei MM, Wang FH, Ling C, Li AM. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:290-298. [PMID: 28183018 DOI: 10.1016/j.jhazmat.2017.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/07/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H2PO4- from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H2PO4- were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H2PO4- accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H2PO4-. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.
Collapse
Affiliation(s)
- Yan-Hong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Fu-Qiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Chang-Qing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Xiao-Peng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Meng-Meng Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Feng-He Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Ling
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
7
|
Wu Y, Gu W, Tang J, Xu ZP. Devising new lipid-coated calcium phosphate/carbonate hybrid nanoparticles for controlled release in endosomes for efficient gene delivery. J Mater Chem B 2017; 5:7194-7203. [DOI: 10.1039/c7tb01635b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New hybrid nanoparticles can efficiently deliver dsDNA/siRNA to cancer cells, with the gene release precisely controlled in the endosomal pH range.
Collapse
Affiliation(s)
- Yilun Wu
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- St. Lucia
- Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- St. Lucia
- Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- St. Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- the University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
8
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|