1
|
Wawszczak A, Kocki J, Kołodyńska D. Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications-The Case Studies. J Biomed Mater Res B Appl Biomater 2024; 112:1-23. [PMID: 39269132 DOI: 10.1002/jbm.b.35475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.
Collapse
Affiliation(s)
- Alicja Wawszczak
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Hosseini S, Sharifi R, Habibi A, Ali Q. Molecular identification of rhamnolipids produced by Pseudomonas oryzihabitans during biodegradation of crude oil. Front Microbiol 2024; 15:1459112. [PMID: 39234543 PMCID: PMC11372847 DOI: 10.3389/fmicb.2024.1459112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction The ability to produce biosurfactants plays a meaningful role in the bioavailability of crude oil hydrocarbons and the bioremediation efficiency of crude oil-degrading bacteria. This study aimed to characterize the produced biosurfactants by Pseudomonas oryzihabitans during the biodegradation of crude oil hydrocarbons. Methods The biosurfactants were isolated and then characterized by Fourier transform infrared (FTIR), liquid chromatography-mass-spectrometry (LC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. Results The FTIR results revealed the existence of hydroxyl, carboxyl, and methoxyl groups in the isolated biosurfactants. Also, the LC-MS analysis demonstrated a main di-rhamnolipid (l-rhamnopyranosyll-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C10-C10) along with a mono-rhamnolipid (l-rhamnopyranosyl-b-hydroxydecanoylb-hydroxydecanoate, Rha-C10-C10). In agreement with these findings, the NMR analysis confirmed the aromatic, carboxylic, methyl, sulfate moieties, and hexose sugar in the biosurfactants. The emulsion capacity of the biosurfactants decreased the surface tension of the aqueous system from 73.4 mN m-1 to around 33 mN m-1 at 200 mg L-1 as the critical micelle concentration. The emulsification capacity of the biosurfactants in the formation of a stable microemulsion for the diesel-water system at a wide range of pH (2-12), temperature (0-80°C), and salinity (2-20 g L-1 of NaCl) showed their potential use in oil recovery and bioremediation through the use of microbial enhancement. Discussion This work showed the ability of Pseudomonas oryzihabitans NC392 cells to produce rhamnolipid molecules during the biodegradation process of crude oil hydrocarbons. These biosurfactants have potential in bioremediation studies as eco-friendly and biodegradable products, and their stability makes them optimal for areas with extreme conditions.
Collapse
Affiliation(s)
- Saman Hosseini
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Alireza Habibi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
Lin X, Chen J, Xia Y, Chen Y, Gan H, Liu Z, Wu Q, Zhang Y, Guo N. Alginate Cryogels for Rapid Hemostasis and Toluidine Blue-Mediated Photodynamic Inactivation of Bacteria. ACS OMEGA 2024; 9:35845-35852. [PMID: 39184519 PMCID: PMC11339824 DOI: 10.1021/acsomega.4c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
The development of new wound dressings with fast hemostatic and bactericidal properties for prehospital care is critical. Antibacterial photodynamic therapy (aPDT) has attracted attention due to its broad-spectrum antibacterial activity and minimal bacterial resistance. However, photosensitizers used in aPDT often face issues such as poor water solubility, short-lived singlet oxygen (1O2), and limited 1O2 diffusion range. In this study, sodium alginate was covalently modified with the photosensitizer toluidine blue O (TBO) and phenylboronic acid (PBA). The modified alginate was then cross-linked with Ca(II) ions and lyophilized to form a cryogel, named SA@Ca(II)@TBO@PBA (SCTP). This cryogel functions as an antibacterial photodynamic wound dressing. The chemical immobilization of TBO and PBA enhanced the cryogel's targeting ability. PBA formed reversible covalent bonds with diol groups on bacterial cell surfaces, allowing the cryogel to capture bacteria effectively and enhance aPDT. The bactericidal efficiency of the cryogel was tested through in vitro antibacterial assays, and its hemostatic properties were confirmed in vivo. The results indicate that this cryogel has excellent hemostatic and antibacterial capabilities, showing great promise as a wound dressing for clinical applications.
Collapse
Affiliation(s)
- Xiaocheng Lin
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Jia Chen
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yu Xia
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yan Chen
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Huixuan Gan
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Zhongjia Liu
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Quanxin Wu
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yang Zhang
- Guangdong
Dongguan Quality Supervision Testing Center, Dongguan 523000, China
| | - Ning Guo
- Dongguan
Children’s Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| |
Collapse
|
4
|
Zapata-Peñasco I, Avelino-Jiménez I, Mendoza-Pérez J, Vázquez Guevara M, Gutiérrez-Ladrón de Guevara M, Valadez- Martínez M, Hernández-Maya L, Garibay-Febles V, Fregoso-Aguilar T, Fonseca-Campos J. Environmental stressor assessment of hydrocarbonoclastic bacteria biofilms from a marine oil spill. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00834. [PMID: 38948351 PMCID: PMC11211098 DOI: 10.1016/j.btre.2024.e00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 07/02/2024]
Abstract
The environmental and economic impact of an oil spill can be significant. Biotechnologies applied during a marine oil spill involve bioaugmentation with immobilised or encapsulated indigenous hydrocarbonoclastic species selected under laboratory conditions to improve degradation rates. The environmental factors that act as stressors and impact the effectiveness of hydrocarbon removal are one of the challenges associated with these applications. Understanding how native microbes react to environmental stresses is necessary for effective bioaugmentation. Herein, Micrococcus luteus and M. yunnanensis isolated from a marine oil spill mooring system showed hydrocarbonoclastic activity on Maya crude oil in a short time by means of total petroleum hydrocarbons (TPH) at 144 h: M. luteus up to 98.79 % and M. yunnanensis 97.77 % removal. The assessment of Micrococcus biofilms at different temperature (30 °C and 50 °C), pH (5, 6, 7, 8, 9), salinity (30, 50, 60, 70, 80 g/L), and crude oil concentration (1, 5, 15, 25, 35 %) showed different response to the stressors depending on the strain. According to response surface analysis, the main effect was temperature > salinity > hydrocarbon concentration. The hydrocarbonoclastic biofilm architecture was characterised using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Subtle but significant differences were observed: pili in M. luteus by SEM and the topographical differences measured by AFM Power Spectral Density (PSD) analysis, roughness was higher in M. luteus than in M. yunnanensis. In all three domains of life, the Universal Stress Protein (Usp) is crucial for stress adaptation. Herein, the uspA gene expression was analysed in Micrococcus biofilm under environmental stressors. The uspA expression increased up to 2.5-fold in M. luteus biofilms at 30 °C, and 1.3-fold at 50 °C. The highest uspA expression was recorded in M. yunnanensis biofilms at 50 °C with 2.5 and 3-fold with salinities of 50, 60, and 80 g/L at hydrocarbon concentrations of 15, 25, and 35 %. M. yunnanensis biofilms showed greater resilience than M. luteus biofilms when exposed to harsh environmental stressors. M. yunnanensis biofilms were thicker than M. luteus biofilms. Both biofilm responses to environmental stressors through uspA gene expression were consistent with the behaviours observed in the response surface analyses. The uspA gene is a suitable biomarker for assessing environmental stressors of potential microorganisms for bioremediation of marine oil spills and for biosensing the ecophysiological status of native microbiota in a marine petroleum environment.
Collapse
Affiliation(s)
- I. Zapata-Peñasco
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - I.A. Avelino-Jiménez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - J. Mendoza-Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - M. Vázquez Guevara
- Facultad de Química, Universidad de Guanajuato, Noria Alta, Guanajuato, 36050, Mexico
| | - M. Gutiérrez-Ladrón de Guevara
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - M. Valadez- Martínez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - L. Hernández-Maya
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - V. Garibay-Febles
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Gustavo A. Madero, Ciudad de México, 07730, Mexico
| | - T. Fregoso-Aguilar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico
| | - J. Fonseca-Campos
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av Instituto Politécnico Nacional, Gustavo A. Madero, 07340, Mexico
| |
Collapse
|
5
|
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials. Mar Drugs 2023; 21:353. [PMID: 37367678 PMCID: PMC10302983 DOI: 10.3390/md21060353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
This review article presents past and current alginate-based materials in each application, showing the widest range of alginate's usage and development in the past and in recent years. The first segment emphasizes the unique characteristics of alginates and their origin. The second segment sets alginates according to their application based on their features and limitations. Alginate is a polysaccharide and generally occurs as water-soluble sodium alginate. It constitutes hydrophilic and anionic polysaccharides originally extracted from natural brown algae and bacteria. Due to its promising properties, such as gelling, moisture retention, and film-forming, it can be used in environmental protection, cosmetics, medicine, tissue engineering, and the food industry. The comparison of publications with alginate-based products in the field of environmental protection, medicine, food, and cosmetics in scientific articles showed that the greatest number was assigned to the environmental field (30,767) and medicine (24,279), whereas fewer publications were available in cosmetic (5692) and food industries (24,334). Data are provided from the Google Scholar database (including abstract, title, and keywords), accessed in May 2023. In this review, various materials based on alginate are described, showing detailed information on modified composites and their possible usage. Alginate's application in water remediation and its significant value are highlighted. In this study, existing knowledge is compared, and this paper concludes with its future prospects.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- WellU sp.z.o.o., Wielkopolska 280, 81-531 Gdynia, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
6
|
Callaghan C, Califano D, Feresin Gomes MH, Pereira de Carvalho HW, Edler KJ, Mattia D. Cellulose Acetate Microbeads for Controlled Delivery of Essential Micronutrients. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4749-4758. [PMID: 37008180 PMCID: PMC10052346 DOI: 10.1021/acssuschemeng.2c07269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The controlled delivery of micronutrients to soil and plants is essential to increase agricultural yields. However, this is today achieved using fossil fuel-derived plastic carriers, posing environmental risks and contributing to global carbon emissions. In this work, a novel and efficient way to prepare biodegradable zinc-impregnated cellulose acetate beads for use as controlled release fertilizers is presented. Cellulose acetate solutions in DMSO were dropped into aqueous antisolvent solutions of different zinc salts. The droplets underwent phase inversion, forming solid cellulose acetate beads containing zinc, as a function of zinc salt type and concentration. Even higher values of zinc uptake (up to 15.5%) were obtained when zinc acetate was added to the cellulose acetate-DMSO solution, prior to dropping in aqueous zinc salt antisolvent solutions. The release profile in water of the beads prepared using the different solvents was linked to the properties of the counter-ions via the Hofmeister series. Studies in soil showed the potential for longer release times, up to 130 days for zinc sulfate beads. These results, together with the efficient bead production method, demonstrate the potential of zinc-impregnated cellulose acetate beads to replace the plastic-based controlled delivery products used today, contributing to the reduction of carbon emissions and potential environmental impacts due to the uptake of plastic in plants and animals.
Collapse
Affiliation(s)
- Ciarán Callaghan
- Centre
for Sustainable & Circular Technologies, University of Bath, Bath BA27AY, U.K.
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Davide Califano
- Centre
for Sustainable & Circular Technologies, University of Bath, Bath BA27AY, U.K.
| | | | | | - Karen J. Edler
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Lund 221 00, Sweden
| | - Davide Mattia
- Centre
for Sustainable & Circular Technologies, University of Bath, Bath BA27AY, U.K.
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
7
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Silviana S, Janitra AA, Sa’adah AN, Dalanta F. Synthesis of Aminopropyl-Functionalized Mesoporous Silica Derived from Geothermal Silica for an Effective Slow-Release Urea Carrier. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. Silviana
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Tembalang, Semarang 50275, Indonesia
| | - Atikah A. Janitra
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Tembalang, Semarang 50275, Indonesia
| | - Afriza N. Sa’adah
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Tembalang, Semarang 50275, Indonesia
| | - Febio Dalanta
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Tembalang, Semarang 50275, Indonesia
| |
Collapse
|
9
|
Highly Effective Covalently Crosslinked Composite Alginate Cryogels for Cationic Dye Removal. Gels 2021; 7:gels7040178. [PMID: 34698202 PMCID: PMC8544462 DOI: 10.3390/gels7040178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023] Open
Abstract
Currently, macroporous hydrogels have been receiving attention in wastewater treatment due to their unique structures. As a natural polymer, alginate is used to remove cationic dyes due to its sustainable features such as abundance, low cost, processability, and being environmentally friendly. Herein, alginate/montmorillonite composite macroporous hydrogels (cryogels) with high porosity, mechanical elasticity, and high adsorption yield for methylene blue (MB) were generated by the one-step cryogelation technique. These cryogels were synthesized by adding montmorillonite into gel precursor, followed by chemical cross-linking employing carbodiimide chemistry in a frozen state. The as-prepared adsorbents were analyzed by FT-IR, SEM, gel fraction, swelling, uniaxial compression, and MB adsorption tests. The results indicated that alginate/montmorillonite cryogels exhibited high gelation yield (up to 80%), colossal water uptake capacity, elasticity, and effective dye adsorption capacity (93.7%). Maximum adsorption capacity against MB was 559.94 mg g-1 by linear regression of Langmuir model onto experimental data. The Pseudo-Second-Order model was fitted better onto kinetic data compared to the Pseudo-First-Order model. Improved porosity and mechanical elasticity yielding enhanced dye removal capacity make them highly potential alternative adsorbents compared to available alginate/montmorillonite materials for MB removal.
Collapse
|
10
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
11
|
Luo H, Wang Y, Wen X, Cheng S, Li J, Lin Q. Key roles of the crystal structures of MgO-biochar nanocomposites for enhancing phosphate adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142618. [PMID: 33069464 DOI: 10.1016/j.scitotenv.2020.142618] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The affinity of biochar (BC) adsorbing phosphate was weak, while generation of magnesium oxide (MgO)-BC nanocomposites that transformed the crystal structures of BC would change the adsorption processes in improving the phosphate adsorption. Hereon, four different crystal structure of absorbents were selected to illustrate why the crystal structures and surface properties of absorbents were of great importance for the phosphate adsorption. The results showed that MgO/KBC with higher combination degree between MgO and KBC could change the normal crystal structure (MgO/KBC1, MgO phase (dominant)) to C-Mg-O phase (dominant). Therefore, MgO/KBC could achieve highest adsorption rate (k2, 8.059 g mg-1 min-1) and qm (maximal adsorption capacity, 121.950 mg g-1) for phosphate adsorption among absorbents, and even it had high anti-interference capacity for anions and natural organic matter (NOM). The mechanisms of MgO/KBC for phosphate adsorption were hydrogen-bond interaction, inner-sphere complexation and surface chemical adsorption; adsorption of phosphate on MgO/KBC1 was mainly controlled by inner-sphere complexation (Mg-O-PO3H2-, Mg-O-PO3H2- species). In addition, the adsorbability of MgO/KBC for phosphate could be restored after recalcination, which further proved that an efficient nanocomposite, calcinated from waste biomass (fallen leaves), was proposed to control eutrophication.
Collapse
Affiliation(s)
- Haoyu Luo
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China; Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yijie Wang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Xiaoqing Wen
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuailong Cheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Li
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River&Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China.
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Zhang Y, Pham HM, Munguia-Lopez JG, Kinsella JM, Tran SD. The Optimization of a Novel Hydrogel-Egg White-Alginate for 2.5D Tissue Engineering of Salivary Spheroid-Like Structure. Molecules 2020; 25:E5751. [PMID: 33291221 PMCID: PMC7730374 DOI: 10.3390/molecules25235751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Hydrogels have been used for a variety of biomedical applications; in tissue engineering, they are commonly used as scaffolds to cultivate cells in a three-dimensional (3D) environment allowing the formation of organoids or cellular spheroids. Egg white-alginate (EWA) is a novel hydrogel which combines the advantages of both egg white and alginate; the egg white material provides extracellular matrix (ECM)-like proteins that can mimic the ECM microenvironment, while alginate can be tuned mechanically through its ionic crosslinking property to modify the scaffold's porosity, strength, and stiffness. In this study, a frozen calcium chloride (CaCl2) disk technique to homogenously crosslink alginate and egg white hydrogel is presented for 2.5D culture of human salivary cells. Different EWA formulations were prepared and biologically evaluated as a spheroid-like structure platform. Although all five EWA hydrogels showed biocompatibility, the EWA with 1.5% alginate presented the highest cell viability, while EWA with 3% alginate promoted the formation of larger size salivary spheroid-like structures. Our EWA hydrogel has the potential to be an alternative 3D culture scaffold that can be used for studies on drug-screening, cell migration, or as an in vitro disease model. In addition, EWA can be used as a potential source for cell transplantation (i.e., using this platform as an ex vivo environment for cell expansion). The low cost of producing EWA is an added advantage.
Collapse
Affiliation(s)
- Yuli Zhang
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| | - Hieu M. Pham
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| | - Jose G. Munguia-Lopez
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada;
| | - Joseph M. Kinsella
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada;
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| |
Collapse
|
13
|
Improving Nitrate Fertilization by Encapsulating Zn-Al Layered Double Hydroxides in Alginate Beads. NITROGEN 2020. [DOI: 10.3390/nitrogen1020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Layered double hydroxides (LDH) are anionic clays that have potential as slow-release fertilizers; however, their formulation as powders makes them difficult to apply, and their slow-release properties are impaired due to instability under acidic conditions. In the work reported, Zn-Al LDH containing interlayered 15NO3− was synthesized for use as powder (LDH-N) or for encapsulation in alginate beads (LDH-AN), and then authenticated by X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectroscopy, and elemental analyses. The two LDHs were compared to K15NO3 for evaluating their slow-release properties through (i) a kinetic study of NO3− release in water under dynamic conditions, and (ii) a growth chamber experiment designed to estimate fertilizer N uptake efficiency (FNUE) by growing pearl millet (Pennisetum glaucum L.) on an acidic Oxisol in the absence of N losses. Both LDH materials exhibited slow-release properties in the kinetic studies, and NO3− release was reduced for LDH-AN as compared to LDH-N. Because of these properties, FNUE measurements in the growth chamber experiment should have been lower with the LDHs than with K15NO3, but this was not the case for LDH-N, which was attributed to the structural instability of powdered LDH in the presence of soil acidity and to the exchange of NO3− by more competitive anions such as CO32−. A significant decrease in FNUE was observed for LDH-AN, demonstrating retention of slow-release behavior that most likely resulted from the presence of a physicochemical barrier having high cation-exchange and buffering capacities while limiting exposure to soil acidity and anion exchange. Alginate encapsulation expands the practical potential of LDH for slow-release NO3− fertilization.
Collapse
|
14
|
Castro GFD, Mattiello EM, Ferreira JA, Zotarelli L, Tronto J. Synthesis, characterization and agronomic use of alginate microspheres containing layered double hydroxides intercalated with borate. NEW J CHEM 2020. [DOI: 10.1039/c9nj06042a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alginate microspheres containing layered double hydroxides intercalated with borate: reduction on boron leaching and increasing boron uptake by plants.
Collapse
Affiliation(s)
| | | | - Jader Alves Ferreira
- Universidade Federal de Viçosa
- Instituto de Ciências Exatas e Tecnológicas
- Rio Paranaíba
- Brazil
| | - Lincoln Zotarelli
- University of Florida
- Horticultural Sciences Department
- Gainesville
- USA
| | - Jairo Tronto
- Universidade Federal de Viçosa
- Instituto de Ciências Exatas e Tecnológicas
- Rio Paranaíba
- Brazil
| |
Collapse
|
15
|
de Castro GF, Zotarelli L, Mattiello EM, Tronto J. Alginate beads containing layered double hydroxide intercalated with borate: a potential slow-release boron fertilizer for application in sandy soils. NEW J CHEM 2020. [DOI: 10.1039/d0nj03571h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alginate beads containing layered double hydroxide intercalated with borate: a new fertilizer to reduce boron leaching and increase plant uptake.
Collapse
Affiliation(s)
| | - Lincoln Zotarelli
- University of Florida
- Horticultural Sciences Department
- Gainesville
- USA
| | | | - Jairo Tronto
- Universidade Federal de Viçosa
- Instituto de Ciências Exatas e Tecnológicas
- Rio Paranaíba
- Brazil
| |
Collapse
|
16
|
Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Liquid–liquid flow patterns and slug characteristics in cross-shaped square microchannel for cryogel beads preparation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Thaw-Induced Gelation of Alginate Hydrogels for Versatile Delivery of Therapeutics. Ann Biomed Eng 2019; 47:1701-1710. [PMID: 31044339 DOI: 10.1007/s10439-019-02282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/26/2019] [Indexed: 12/29/2022]
Abstract
Alginate hydrogels have been extensively used and successfully validated as delivery vehicles of bioactive factors in many tissue engineering applications. This work describes and characterizes a singular alternative method to create alginate hydrogels designated as thaw-induced gelation (TIG). The TIG method involves gelation through the time-dependent release of the polymer or crosslinker by melting into solution. Alginate TIG hydrogels were validated for spatial-temporal control delivery of different cargos including albumin, dextran, and doxorubicin. Chitosan was incorporated into TIG hydrogels to investigate the electrostatic interactions between alginate and the tested cargos. Interestingly, while 90% of doxorubicin was released after 8 h from hydrogels formed with frozen calcium, hydrogels formulated from frozen alginate took 72 h. In addition, the storage modulus of TIG hydrogels prepared from frozen alginate was double that of a hydrogel formed without freezing alginate. Therefore, the utility of TIG strategies are particularly promising for the delivery of therapeutic cargos smaller than the mesh size of the alginate hydrogel, as it enables controlled release of these cargos without any further chemical modifications of the hydrogels. These TIG alginate hydrogels with tunable mechanical properties and control over the delivery of smaller cargos could be useful in many tissue engineering applications.
Collapse
|
19
|
Stanley N, Mahanty B. Preparation and characterization of biogenic CaCO3-reinforced polyvinyl alcohol–alginate hydrogel as controlled-release urea formulation. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02763-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Karlapudi AP, Venkateswarulu T, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP. Role of biosurfactants in bioremediation of oil pollution-a review. PETROLEUM 2018; 4:241-249. [DOI: 10.1016/j.petlm.2018.03.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
|
21
|
Zhang W, Yang Y, Guan T, Guan J, Zheng S, Chen B, Yun J. Formation Dynamics of Cell-Loading Alginate Droplets in the Microtube Dripping and Cryo-Cross-Linking Process for Cell-Entrapped Cryogel Beads as the Biocatalysts toward Phenyllactic Acid Biosynthesis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wei Zhang
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Yujun Yang
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Tingting Guan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jintao Guan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sanlong Zheng
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Bingbing Chen
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
22
|
Gurikov P, Smirnova I. Non-Conventional Methods for Gelation of Alginate. Gels 2018; 4:E14. [PMID: 30674790 PMCID: PMC6318612 DOI: 10.3390/gels4010014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Abstract
This review presents and critically evaluates recent advances in non-conventional gelation method of native alginate. A special focus is given to the following three methods: cryotropic gelation, non-solvent induced phase separation and carbon dioxide induced gelation. A few other gelation approaches are also briefly reviewed. Results are discussed in the context of subsequent freeze and supercritical drying. The methods are selected so as to provide the readers with a range of novel tools and tactics of pore engineering for alginate and other anionic polysaccharides.
Collapse
Affiliation(s)
- Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| |
Collapse
|
23
|
Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. Trends Biotechnol 2017; 35:860-870. [PMID: 28511936 DOI: 10.1016/j.tibtech.2017.04.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
Abstract
The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.
Collapse
Affiliation(s)
- Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Alberto Scoma
- Center for Microbial Ecology and Technology (CMET), University of Gent, B 9000 Gent, Belgium
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, 23955-6900 Thuwal, Saudi Arabia
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00015 Monterotondo, Italy
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), University of Gent, B 9000 Gent, Belgium
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|