1
|
Affiliation(s)
- Abhishek Patel
- Department of mechanical engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Mohammad Taufik
- Department of mechanical engineering, Maulana Azad National Institute of Technology, Bhopal, India
| |
Collapse
|
3
|
Park Y, Byun H, Lee JH. Highly Stretchable and Transparent Optical Adhesive Films Using Hierarchically Structured Rigid-Flexible Dual-Stiffness Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1493-1502. [PMID: 33382572 DOI: 10.1021/acsami.0c18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The demand for new forms of flexible electronic devices has led to the evolution of individual components comprising optical adhesive films that provide excellent optical transparency and high bonding strength while offering remarkable elasticity with high strain and recovery properties. Herein, a new type of highly elastic and transparent adhesive film is proposed using tailored rigid-flexible dual-stiffness nanoparticles (DSNs) composed of a rigid inorganic core and an elastic reactive coil shell. The hierarchically structured nanoparticles were prepared from SiO2 nanoparticles via the sequential surface modification with photoreactive flexible chains. The fabricated elastic adhesive film containing DSNs with an average diameter of 20 nm showed a high optical transmittance of 92% and adhesion strength of 19.9 N/25 mm. Increasing the content of the tailored nanoparticles in the adhesive film improved the elastic properties of the film such as elastic modulus (7.0 kPa), stress relaxation ratio (18.4%), and strain recovery rate (73.6%) due to the efficient elastic motion of the embedded DSNs. In addition, as the surface grafting density of elastic coil groups in the nanoparticle increased, a stronger bonding network was formed between the nanoparticles and the acrylic polymer matrix, thereby further improving the stress relaxation ratio (18.0%) and strain recovery rate (77.1%) of the optical film. Thus, the utilization of novel dual-stiffness nanoparticles produces optical adhesive films with high elasticity and optical transparency that are capable of withstanding external forces such as folding and stretching, which is essential for flexible electronic devices.
Collapse
Affiliation(s)
- Yoongook Park
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Hoyun Byun
- Module Research Team, Samsung Display, Yongin 17113, Republic of Korea
| | - Jun Hyup Lee
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
4
|
SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability. COATINGS 2020. [DOI: 10.3390/coatings10100913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study explores the exploitation of ladder-like polysilsesquioxanes (PSQs) bearing reactive functional groups in conjunction with SiO2 nanoparticles (NPs) to produce UV-curable nanocomposite coatings with increased hydrophobicity and good thermal resistance. In detail, a medium degree regular ladder-like structured poly (methacryloxypropyl) silsesquioxane (LPMASQ) and silica NPs, either naked or functionalized with a methacrylsilane (SiO2@TMMS), were blended and then irradiated in the form of a film. Material characterization evidenced significant modifications of the structural organization of the LPMASQ backbone and, in particular, a rearrangement of the silsesquioxane chains at the interface upon introduction of the functionalized silica NPs. This leads to remarkable thermal resistance and enhanced hydrophobic features in the final nanocomposite. The results suggest that the adopted strategy, in comparison with mostly difficult and expensive surface modification and structuring protocols, may provide tailored functional properties without modifying the surface roughness or the functionalities of silsesquioxanes, but simply tuning their interactions at the hybrid interface with silica fillers.
Collapse
|
6
|
Xie J, Wang Z, Zhao Q, Yang Y, Xu J, Waterhouse GIN, Zhang K, Li S, Jin P, Jin G. Scale-Up Fabrication of Biodegradable Poly(butylene adipate- co-terephthalate)/Organophilic-Clay Nanocomposite Films for Potential Packaging Applications. ACS OMEGA 2018; 3:1187-1196. [PMID: 31457960 PMCID: PMC6641378 DOI: 10.1021/acsomega.7b02062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 06/02/2023]
Abstract
The development of biodegradable packing materials is a global priority due to the huge volumes of plastic refuse entering landfills and the environment. In this study, a series of biodegradable nanocomposite films based on poly(butylene adipate-co-terephthalate) (PBAT) and reinforced with an organophilic layered double hydroxide (OLDH) were scale-up fabricated. The OLDH nanosheets with a basal spacing of 4.07 nm were presynthesized on a large-scale by solvent-free high-energy ball milling. All of the PBAT/OLDH nanocomposite films (0.5-4 wt % OLDH) showed a uniform dispersion of OLDH nanosheets in the PBAT matrix. A PBAT/OLDH film containing 1 wt % OLDH (denoted herein as OLDH-1) demonstrated outstanding thermal, optical, mechanical, and water vapor barrier properties compared with a pure PBAT film (OLDH-0), including a 37% reduction in haze and a 41.9% increase in nominal tensile strain at break dramatically. Furthermore, the food packaging measurement revealed that the OLDH-1 film showed a better packaging effect than the pure PBAT film and commercial polyethylene packing materials. The feasibility of scale-up manufacture and the excellent processability, manufacturing scalability, mechanical performance, optical transparency, water vapor barrier properties, and food packaging performance of the PBAT/OLDH nanocomposite films encourage their future application as biodegradable packaging films.
Collapse
Affiliation(s)
- Jiazhuo Xie
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Zhou Wang
- State
Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Co., Ltd, 19 Xingdaxi Street, Linshu 276700, Shandong, China
| | - Qinghua Zhao
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
- Department
of Basic Courses, Shandong Medicine Technician
College, 999 Fengtian
Road, Tai’an 271000, Shandong, China
| | - Yuechao Yang
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Jing Xu
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Geoffrey I. N. Waterhouse
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
- School
of Chemical Sciences, The University of
Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kun Zhang
- College
of Chemistry and Material Science, Shandong
Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Shan Li
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Peng Jin
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| | - Geyang Jin
- National
Engineering Laboratory for Efficient Utilization of Soil and Fertilizer
Resources, National Engineering & Technology Research Center for
Slow and Controlled Release Fertilizers, College of Resources and
Environment, Shandong Agricultural University, 61 Daizong Street, Tai’an 271000, Shandong, China
| |
Collapse
|