1
|
Sahu B, Sinha P, Kumar D, Patel K, Banerjee S. Magnetically Recyclable Nanoscale Zero-Valent Iron-Mediated PhotoRDRP in Ionic Liquid toward Smart, Functional Polymers. Macromol Rapid Commun 2024; 45:e2300500. [PMID: 37870940 DOI: 10.1002/marc.202300500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Indexed: 10/25/2023]
Abstract
A facile method based on recyclable nanoscale zero-valent iron (nZVI)-mediated photoinduced reversible deactivation radical polymerization in ionic liquid (IL) leads to the synthesis of narrow disperse poly(tert-butyl methacrylate) (PTBMA), amphiphilic PTBMA-block-poly(poly(ethylene glycol)methacrylate) diblock copolymer and double hydrophilic poly(methacrylic acid)-block-poly(poly(ethylene glycol)methacrylate) (PMAA-b-PPEGMA) diblock copolymers thereof. Stimuli response of the synthesized PMAA-b-PPEGMA diblock copolymer against variation in pH and temperature is assessed. Recyclability of the nZVI (catalyst) and IL (solvent) is established. Polymerization may be switched ON or OFF, simply by turning the UVA light irradiation ON or OFF, offering temporal control. The diblock copolymer self-aggregates into spherical nanoaggregates which are employed for encapsulation of coumarin 102 (C102, a typical hydrophobic dye), describing their potential application in drug delivery applications. The facile synthesis strategy may open up new avenues for the preparation of intelligent functional polymers for engineering and biomedical applications.
Collapse
Affiliation(s)
- Bhanendra Sahu
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Priyank Sinha
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Kundan Patel
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| |
Collapse
|
2
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
3
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Kütahya C, Meckbach N, Strehmel V, Strehmel B. Cyanines comprising barbiturate group facilitate
NIR‐light
assisted
ATRP
under anaerobic and aerobic conditions at two wavelengths using Fe(
III
) catalyst. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ceren Kütahya
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Nicolai Meckbach
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Veronika Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Bernd Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| |
Collapse
|
5
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
6
|
Słowikowska M, Chajec K, Michalski A, Zapotoczny S, Wolski K. Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr 3 under Visible Light. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5139. [PMID: 33202639 PMCID: PMC7697009 DOI: 10.3390/ma13225139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Reversible deactivation radical polymerizations with reduced amount of organometallic catalyst are currently a field of interest of many applications. One of the very promising techniques is photoinduced atom transfer radical polymerization (photo-ATRP) that is mainly studied for copper catalysts in the solution. Recently, advantageous iron-catalyzed photo-ATRP (photo-Fe-ATRP) compatible with high demanding biological applications was presented. In response to that, we developed surface-initiated photo-Fe-ATRP (SI-photo-Fe-ATRP) that was used for facile synthesis of poly(methyl methacrylate) brushes with the presence of only 200 ppm of FeBr3/tetrabutylammonium bromide catalyst (FeBr3/TBABr) under visible light irradiation (wavelength: 450 nm). The kinetics of both SI-photo-Fe-ATRP and photo-Fe-ATRP in solution were compared and followed by 1H NMR, atomic force microscopy (AFM) and gel permeation chromatography (GPC). Brush grafting densities were determined using two methodologies. The influence of the sacrificial initiator on the kinetics of brush growth was studied. It was found that SI-photo-Fe-ATRP could be effectively controlled even without any sacrificial initiators thanks to in situ production of ATRP initiator in solution as a result of reaction between the monomer and Br radicals generated in photoreduction of FeBr3/TBABr. The optimized and simplified reaction setup allowed synthesis of very thick (up to 110 nm) PMMA brushes at room temperature, under visible light with only 200 ppm of iron-based catalyst. The same reaction conditions, but with the presence of sacrificial initiator, enabled formation of much thinner layers (18 nm).
Collapse
Affiliation(s)
- Monika Słowikowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Kamila Chajec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Adam Michalski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| |
Collapse
|
7
|
Dadashi-Silab S, Matyjaszewski K. Iron Catalysts in Atom Transfer Radical Polymerization. Molecules 2020; 25:E1648. [PMID: 32260141 PMCID: PMC7180715 DOI: 10.3390/molecules25071648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP.
Collapse
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|
8
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Li S, Wang Y, Ma L, Zhang X, Dong S, Liu L, Zhou X, Wang C, Shi Z. Synthesis of PAN with adjustable molecular weight and low polydispersity index (PDI) value via reverse atom transfer radical polymerization. Des Monomers Polym 2019; 22:180-186. [PMID: 31700503 PMCID: PMC6830196 DOI: 10.1080/15685551.2019.1678557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/06/2019] [Indexed: 11/08/2022] Open
Abstract
The reverse atom transfer radical polymerization (RATRP) of acrylonitrile (AN) was carried out in N, N-dimethylformamide (DMF) with AIBN as initiator, FeCl3•6H2O/triphenylphosphine (PPh3) and FeCl3•6H2O/pentamethyldle-thylenetrlamlne (PMDETA) as catalytic systems, respectively. Effect of reaction time and initiator concentration on polymerization rate, molecular weight and molecular weight distribution were investigated in detail. The Fourier transform infrared spectrometer (FTIR) and 1H nuclear magnetic resonance spectroscopy (1HNMR) were employed to analyze the chain end of the PAN. Gel permeation chromatography (GPC) was applied to measure the molecular weight and polydispersity index (PDI) of PAN. The polymerization demonstrated a typical pseudo first-order kinetics characteristics as evidenced by the number-average molecular weights (Mn) increasing linearly with monomer conversion; the Mn decreasing with the increasing of the initiator concentration. Meanwhile, the low PDI value (<1.2) indicated the controllability of polymerization.
Collapse
Affiliation(s)
- Shuang Li
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China
| | - Yazhen Wang
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar, China
| | - Liqun Ma
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China
| | - Xueze Zhang
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar, China
| | - Shaobo Dong
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar, China
| | - Li Liu
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar, China
| | - Xilai Zhou
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China
| | - Chenglong Wang
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar, China
| | - Zhen Shi
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
10
|
Zhou YN, Li JJ, Ljubic D, Luo ZH, Zhu S. Mechanically Mediated Atom Transfer Radical Polymerization: Exploring Its Potential at High Conversions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jin-Jin Li
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Darko Ljubic
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China 518172
| |
Collapse
|
11
|
Bian C, Zhou YN, Guo JK, Luo ZH. Aqueous Metal-Free Atom Transfer Radical Polymerization: Experiments and Model-Based Approach for Mechanistic Understanding. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00348] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun-Kang Guo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
12
|
Vasu V, Kim JS, Yu HS, Bannerman WI, Johnson ME, Asandei AD. Normal, ICAR and photomediated butadiene-ATRP with iron complexes. Polym Chem 2018. [DOI: 10.1039/c8py00463c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
FeX2 or FeX3 (X = Cl ≫ Br) alone or with P ≫ X > O > N > C ligands and bromoester initiators enable the successful ATRP of butadiene in toluene at 110 °C.
Collapse
Affiliation(s)
- Vignesh Vasu
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Joon-Sung Kim
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Hyun-Seok Yu
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - William I. Bannerman
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Mark E. Johnson
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Alexandru D. Asandei
- Institute of Materials Science and Department of Chemistry
- University of Connecticut
- Storrs
- USA
| |
Collapse
|
13
|
Pan X, Fantin M, Yuan F, Matyjaszewski K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018; 47:5457-5490. [DOI: 10.1039/c8cs00259b] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ATRP can be externally controlled by electrical current, light, mechanical forces and various chemical reducing agents. The mechanistic aspects and preparation of polymers with complex functional architectures and their applications are critically reviewed.
Collapse
Affiliation(s)
- Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Fang Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
14
|
Shanmugam S, Matyjaszewski K. Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1284.ch001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sivaprakash Shanmugam
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Xie ZK, Guo JK, Luo ZH. Assessment of Microwave Effect on Polymerization Conducted under ARGET ATRP Conditions. MACROMOL REACT ENG 2017. [DOI: 10.1002/mren.201700032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhi-Kang Xie
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Jun-Kang Guo
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|
16
|
Dadashi-Silab S, Pan X, Matyjaszewski K. Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Levels of Iron Catalyst under Blue Light Irradiation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01708] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sajjad Dadashi-Silab
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania United States
| | - Xiangcheng Pan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania United States
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh 15213, Pennsylvania United States
| |
Collapse
|
17
|
Zhou YN, Luo ZH. Assessment of kinetics of photoinduced Fe-based atom transfer radical polymerization under conditions using modeling approach. AIChE J 2017. [DOI: 10.1002/aic.15850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yin-Ning Zhou
- Dept. of Chemical Engineering; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Zheng-Hong Luo
- Dept. of Chemical Engineering; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| |
Collapse
|
18
|
Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJ, Sobkowiak A, Matyjaszewski K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.02.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Shanmugam S, Xu J, Boyer C. Photocontrolled Living Polymerization Systems with Reversible Deactivations through Electron and Energy Transfer. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700143] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
20
|
Bian C, Zhou YN, Guo JK, Luo ZH. Visible-Light-Induced Atom-Transfer-Radical Polymerization with a ppm-Level Iron Catalyst. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun-Kang Guo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, State Key Laboratory
of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
Ramsey BL, Pearson RM, Beck LR, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Continuous Flow. Macromolecules 2017; 50:2668-2674. [PMID: 29051672 PMCID: PMC5642931 DOI: 10.1021/acs.macromol.6b02791] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organocatalyzed atom transfer radical polymerization (O-ATRP) has emerged as a metal-free variant of historically transition-metal reliant atom transfer radical polymerization. Strongly reducing organic photoredox catalysts have proven capable of mediating O-ATRP. To date, operation of photoinduced O-ATRP has been demonstrated in batch reactions. However, continuous flow approaches can provide efficient irradiation reaction conditions and thus enable increased polymerization performance. Herein, the adaptation of O-ATRP to a continuous flow approach has been performed with multiple visible-light absorbing photoredox catalysts. Using continuous flow conditions, improved polymerization results were achieved, consisting of narrow molecular weight distributions as low as 1.05 and quantitative initiator efficiencies. This system demonstrated success with 0.01% photocatalyst loadings and a diverse methacrylate monomer scope. Additionally, successful chain-extension polymerizations using 0.01 mol % photocatalyst loadings reveal continuous flow O-ATRP to be a robust and versatile method of polymerization.
Collapse
Affiliation(s)
- Bonnie L. Ramsey
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan M. Pearson
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Logan R. Beck
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Garret M. Miyake
- Department of Chemistry and Biochemistry University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Bian C, Zhou YN, Guo JK, Luo ZH. Photoinduced Fe-mediated atom transfer radical polymerization in aqueous media. Polym Chem 2017. [DOI: 10.1039/c7py01762f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced atom transfer radical polymerization with an Fe catalyst was successfully performed in aqueous media for the first time.
Collapse
Affiliation(s)
- Chao Bian
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jun-Kang Guo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
23
|
Pan X, Malhotra N, Dadashi‐Silab S, Matyjaszewski K. A Simplified Fe‐Based PhotoATRP Using Only Monomers and Solvent. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600651] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/14/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangcheng Pan
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Nikhil Malhotra
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Sajjad Dadashi‐Silab
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
24
|
Fantin M, Park S, Wang Y, Matyjaszewski K. Electrochemical Atom Transfer Radical Polymerization in Miniemulsion with a Dual Catalytic System. Macromolecules 2016; 49:8838-8847. [PMID: 29977097 PMCID: PMC6029247 DOI: 10.1021/acs.macromol.6b02037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrochemical approach was used to control atom transfer radical polymerization (ATRP) of n-butyl acrylate (BA) in miniemulsion. Electropolymerization required a dual catalytic system, composed of an aqueous phase catalyst and an organic phase catalyst. This allowed shuttling the electrochemical stimulus from the working electrode (WE) to the continuous aqueous phase and to the dispersed monomer droplets. As aqueous phase catalysts, the hydrophilic Cu complexes with the ligands N,N-bis( 2-pyridylmethyl)-2-hydroxyethylamine (BPMEA), 2,2'-bipyridine (bpy), and tris(2-pyridylmethyl)amine (TPMA) were tested. As organic phase catalysts, the hydrophobic complexes with the ligands bis(2-pyridylmethyl)-octadecylamine (BPMODA) and bis[2-(4-methoxy-3,5-dimethyl)-pyridylmethyl]octadecylamine (BPMODA*) were evaluated. Highest rates and best control of BA electropolymerization were obtained with the water-soluble Cu/BPMEA used in combination with the oil-soluble Cu/BPMODA*. The polymerization rate could be further enhanced by changing the potential applied at the WE. Differently from traditional ATRP systems, reactivity of the dual catalytic system did not depend on the redox potential of the catalysts but instead depended on the hydrophobicity and partition coefficient of the aqueous phase catalyst.
Collapse
Affiliation(s)
- Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sangwoo Park
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|