1
|
Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, Alarfaj AA, Wang S. Morinda citrifolia leaf assisted synthesis of ZnO decorated Ag bio-nanocomposites for in-vitro cytotoxicity, antimicrobial and anticancer applications. Bioprocess Biosyst Eng 2024; 47:1213-1226. [PMID: 38509421 DOI: 10.1007/s00449-024-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
This study used Morinda citrifolia leaf (MCL) extract to synthesise Zinc oxide nanoparticles (ZnO NPs) and ZnO decorated silver nanocomposites (ZnO/Ag NCs). The synthesized nanomaterials structural morphology and crystallinity were characterized using a Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) analysis. The antimicrobial activity of ZnO NPs and ZnO/Ag NCs was evaluated using human nosocomial bacterial pathogens. The highest antimicrobial activity was recorded for ZnO/Ag NCs at the minimum inhibitory concentration (MIC) at 80 and 100 μg/mL for Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, Staphylococcus aureus than ZnO NPs at the MIC of 120 and 140 μg/mL for Bacillus subtilis and Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. Furthermore, ROS detection, viability assay and bacterial membrane integrity analysis of ZnO/Ag NCs treated P. aeruginosa and S. aureus revealed the fundamental bactericidal mechanism involving cell wall, cell membrane interaction and release of cytoplasmic contents. In addition, ZnO/Ag NCs and ZnO NPs showed higher toxicity towards A549 lung cancer cells than the non-cancerous RAW264 macrophage cells, with IC50 of 242 and 398 µg/mL respectively, compared to IC50 of 402 and 494 µg/mL for the macrophage cells. These results suggest that the ZnO/Ag NCs can be effectively used to develop antimicrobial and anticancer materials.
Collapse
Affiliation(s)
- Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Deputy Vice-Chancellors Research and Innovation, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Priyadarshini Sakthi Mohan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Faridah Sonsudin
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, 404000, Wanzhou, China
| |
Collapse
|
2
|
Zgura I, Badea N, Enculescu M, Maraloiu VA, Ungureanu C, Barbinta-Patrascu ME. Burdock-Derived Composites Based on Biogenic Gold, Silver Chloride and Zinc Oxide Particles as Green Multifunctional Platforms for Biomedical Applications and Environmental Protection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1153. [PMID: 36770157 PMCID: PMC9919592 DOI: 10.3390/ma16031153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Green nanotechnology is a rapidly growing field linked to using the principles of green chemistry to design novel nanomaterials with great potential in environmental and health protection. In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO) were phytosynthesized through a "green" bottom-up approach, using burdock (Arctium lappa L.) aqueous extract. The morphological (SEM/TEM), structural (XRD, SAED), compositional (EDS), optical (UV-Vis absorption and FTIR spectroscopy), photocatalytic, and bio-properties of the prepared composites were analyzed. The particle size was determined by SEM/TEM and by DLS measurements. The phytoparticles presented high and moderate physical stability, evaluated by zeta potential measurements. The investigation of photocatalytic activity of these composites, using Rhodamine B solutions' degradation under solar light irradiation in the presence of prepared powders, showed different degradation efficiencies. Bioevaluation of the obtained composites revealed the antioxidant and antibacterial properties. The tricomponent system AuAgClZnO showed the best antioxidant activity for capturing ROS and ABTS•+ radicals, and the best biocidal action against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The "green" developed composites can be considered potential adjuvants in biomedical (antioxidant or biocidal agents) or environmental (as antimicrobial agents and catalysts for degradation of water pollutants) applications.
Collapse
Affiliation(s)
- Irina Zgura
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Nicoleta Badea
- General Chemistry Department, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| | - Monica Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | | | - Camelia Ungureanu
- General Chemistry Department, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania
| |
Collapse
|
3
|
Zhang L, Zhang H. Silver Halide-Based Nanomaterials in Biomedical Applications and Biosensing Diagnostics. NANOSCALE RESEARCH LETTERS 2022; 17:114. [PMID: 36437419 PMCID: PMC9702141 DOI: 10.1186/s11671-022-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, silver halide (AgX, X = Cl, Br, I)-based photocatalytic materials have received increasing research attention owing to their excellent visible-light-driven photocatalytic performance for applications in organic pollutant degradation, HER, OER, and biomedical engineering. Ag as a noble metal has a surface plasma effect and can form Schottky junctions with AgX, which significantly promotes electron transport and increases photocatalytic efficiency. Therefore, Ag/AgX can reduce the recombination rate of electrons and holes more than pure AgX, leading to using AgX as a photocatalytic material in biomedical applications. The use of AgX-based materials in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. In this review, we introduce recent developments made in biomedical applications and biosensing diagnostics of AgX (Ag/AgX) photocatalytic materials. In addition, this review also discusses the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| | - Hong Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
4
|
Huang Y, Wang Q, Zhang J, Yu Y, Dan Y, Jiang L. Better Choice for a Polyimide Photocatalyst: Planar or Stereo Crosslinked Structures? Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Huang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Qin Wang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Jianling Zhang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology & Business University, Chongqing 400067, China
| | - Yuyan Yu
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Yi Dan
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Long Jiang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| |
Collapse
|
5
|
Monjezi Z, Vosough M, Heydar KT, Tarlani A. Enhanced photocatalytic treatment using plasmonic Ag @Ag 3PO 4/Ag @AgCl nanophotocatalyst for simultaneous degradation of multiple parabens and UV-filters in various aquatic environments under visible light irradiation. Photochem Photobiol Sci 2022; 21:1601-1616. [PMID: 35644001 DOI: 10.1007/s43630-022-00243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
In this study, simultaneous photocatalytic degradation of different parabens (methyl-, ethyl-, propyl-, and butyl paraben) and UV filters (benzophenone-3, 4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate and octocrylene) in water matrices was performed under visible light irradiation using novel double plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst, synthesized by an easy and fast photochemical conversion and photo-reduction. It was found that the nanophotocatalyst with appropriate mole ratio of Ag@Ag3PO4/Ag@AgCl (1:3) showed superior photocatalytic activity than individual plasmonic nanoparticles. This is because there are two simultaneous surface plasmon resonances (SPR) generated by the metallic Ag nanoparticles, in addition to the hetero-junction structure formed at the interface between Ag@Ag3PO4 and Ag@AgCl. The structures of the synthesized photocatalysts were characterized, and the principal reactive oxygen species in the photocatalytic process were identified via a trapping experiment, confirming superoxide radicals (∙O2-) as the key reactive species of the photocatalytic system. The process of photodegradation of the target pollutants was monitored using an optimized method that incorporated solid-phase extraction in combination with gas chromatography-mass spectrometry. The simultaneous photodegradation process was modeled and optimized using central composite design. The kinetic study revealed that the degradation process over Ag@Ag3PO4 (30%)/Ag@AgCl (70%) under visible light followed a pseudo-first-order kinetic model. The simultaneous degradation of target compounds was further investigated in sewage treatment plant effluent as well as tap water. It was found that the matrix constituents can reduce the photodegradation efficiency, especially in the case of highly contaminated samples.
Collapse
Affiliation(s)
- Zahra Monjezi
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Maryam Vosough
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Kourosh Tabar Heydar
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Aliakbar Tarlani
- Development of Chemical Process Department, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
6
|
Continuous synthesis of TiO2-supported noble metal nanoparticles and their application in ammonia borane hydrolysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Preparation of silver chloride nanoparticles using human urine. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Monjezi Z, Vosough M, Salemi A. Investigation of simultaneous multiple UV filters degradation efficiency of plasmonic Ag @AgCl photocatalyst in the aquatic environment under sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54781-54791. [PMID: 34014478 DOI: 10.1007/s11356-021-14440-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
UV filters as an important class of emerging organic pollutants are continuously released into and transported between the aquatic environments. So, the removal of these compounds from aquatic environments is of great importance. This study was conducted to evaluate the simultaneous photodegradation of three widely used UV filter compounds (4-methylbenzylidene camphor, 2-ethylhexyl 4-(dimethylamino) benzoate, ethylhexyl methoxycinnamate), in an aqueous environment under sunlight and Ag@AgCl photocatalyst integrated with plasmonic effect. The plasmonic Ag@AgCl nanocomposite was constructed via photochemical conversion and photoreduction. The enhanced photocatalytic performance can be attributed to the surface plasmon resonance effect of the silver nanoparticles and the hybrid effect caused by AgCl. For the monitoring of the target compounds' degradation before and after photodegradation, an optimized method based on membrane-protected micro-solid-phase extraction coupled with gas chromatography-mass spectrometry (GC-MS) was employed. The simultaneous degradation of selected UV filters was also further investigated in contaminated real samples (river water) and the results showed that the matrix constituents could diminish the photocatalytic degradation efficiency.
Collapse
Affiliation(s)
- Zahra Monjezi
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Maryam Vosough
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Amir Salemi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, P.O. Box 19839-63113, Tehran, Iran
| |
Collapse
|
9
|
Ma H, Zhao Q, Yao C, Zhao Y, Chen G. Effect of fluid viscosities on the liquid-liquid slug flow and pressure drop in a rectangular microreactor. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Xu F, Yang L, Liu Z, Chen G. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Jeong H, Lee J. Ag/AgCl nanoparticles embedded in porous TiO 2: defect formation triggered by light irradiation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01419f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic activity of Ag/AgCl embedded in defective porous TiO2 was dependent on the changes of Ti3+ and the formation of AgCl crystals.
Collapse
Affiliation(s)
| | - Junhyung Lee
- ECA, Korea Advanced Nano Fab Center
- Suwon-si
- Korea
- Department of Materials Science and Engineering
- Seoul National University
| |
Collapse
|
12
|
Lee SJ, Begildayeva T, Jung HJ, Koutavarapu R, Yu Y, Choi M, Choi MY. Plasmonic ZnO/Au/g-C 3N 4 nanocomposites as solar light active photocatalysts for degradation of organic contaminants in wastewater. CHEMOSPHERE 2021; 263:128262. [PMID: 33297206 DOI: 10.1016/j.chemosphere.2020.128262] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 05/20/2023]
Abstract
In the present study, novel ZnO/Au/graphitic carbon nitride (g-C3N4) nanocomposites were fabricated via a facile and eco-friendly liquid phase pulsed laser process followed by calcination. Notably, the approach did not necessitate the use of any capping agents or surfactants. The as-prepared photocatalysts were evaluated by various electron microscopy and spectroscopy techniques. The obtained results confirmed good dispersion of the Au nanoparticles (NPs) on the surface of spherical ZnO particles deposited on the g-C3N4 nanosheets. The ZnO/Au/g-C3N4 nanocomposite exhibited substantially enhanced catalytic activity toward the degradation of methylene blue (MB) under simulated solar light irradiation. In particular, the ZnO/Au15/g-C3N4 composite containing 15 wt% Au displayed a rate constant, which was approximately 3 and 5 times greater than those of pristine g-C3N4 and ZnO, respectively. This improved photocatalytic activity of ZnO/Au15/g-C3N4 was attributed to the surface plasmon resonance of Au NPs and the synergistic effects between ZnO and g-C3N4. The boundary between ZnO/Au and g-C3N4 enabled direct migration of the photogenerated electrons from g-C3N4 to ZnO/Au, which hindered the recombination of electron-hole pairs and enhanced the carrier separation efficiency. Additionally, a plausible MB degradation mechanism over the ZnO/Au/g-C3N4 photocatalyst is proposed based on the results of the conducted scavenger study.
Collapse
Affiliation(s)
- Seung Jun Lee
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyeon Jin Jung
- Nanomaterials and Nanotechnology Center (Electronic Convergence Division), Korea Institute of Ceramic Engineering & Technology, 101 Soho-ro, Jinju, 52851, South Korea
| | - Ravindranadh Koutavarapu
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yiseul Yu
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Moonhee Choi
- Nanomaterials and Nanotechnology Center (Electronic Convergence Division), Korea Institute of Ceramic Engineering & Technology, 101 Soho-ro, Jinju, 52851, South Korea.
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
13
|
Hu J, Zhang M, He Y, Zhang M, Shen R, Zhang Y, Wang M, Wu G. Fabrication and Potential Applications of Highly Durable Superhydrophobic Polyethylene Terephthalate Fabrics Produced by In-Situ Zinc Oxide (ZnO) Nanowires Deposition and Polydimethylsiloxane (PDMS) Packaging. Polymers (Basel) 2020; 12:polym12102333. [PMID: 33066012 PMCID: PMC7600959 DOI: 10.3390/polym12102333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/17/2023] Open
Abstract
Considerable attention has been devoted to the in-situ deposition of zinc oxide (ZnO) nanowires (ZnO-NWs) on the surface of organic supports, due to their very wide applications in superhydrophobicity, UV shielding, and nanogenerators. However, the poor interfacial bond strength between ZnO-NWs and its support limits their applications. Herein, we developed a facile process to grow robust ZnO-NWs on a polyethylene terephthalate (PET) fabric surface through simultaneous radiation-induced graft polymerization, hydrothermal processing, and in-situ nano-packaging; the obtained materials were denoted as PDMS@ZnO-NWs@PET. The introduction of an adhesion and stress relief layer greatly improved the attachment of the ZnO-NWs to the support, especially when the material was subjected to extreme environment conditions of external friction forces, strong acidic or alkaline solutions, UV-irradiation and even washing with detergent for a long time. The PDMS@ZnO-NWs@PET material exhibited excellent UV resistance, superhydrophobicity, and durability. The ZnO-NWs retained on the fabric surface even after 30 cycles of accelerated washing. Therefore, this process can be widely applied as a universal approach to overcome the challenges associated with growing inorganic nanowires on polymeric support surfaces.
Collapse
Affiliation(s)
- Jiangtao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; (J.H.); (Y.Z.)
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
| | - Mingxing Zhang
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong He
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maojiang Zhang
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
| | - Rongfang Shen
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
| | - Yumei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; (J.H.); (Y.Z.)
| | - Minglei Wang
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
- Correspondence: (M.W.); (G.W.)
| | - Guozhong Wu
- CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, China; (M.Z.); (Y.H.); (M.Z.); (R.S.)
- Correspondence: (M.W.); (G.W.)
| |
Collapse
|
14
|
Luo L, Yang M, Chen G. Continuous Synthesis of Reduced Graphene Oxide-Supported Bimetallic NPs in Liquid–Liquid Segmented Flow. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lamei Luo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
15
|
Dong Z, Udepurkar AP, Kuhn S. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. ULTRASONICS SONOCHEMISTRY 2020; 60:104800. [PMID: 31563796 DOI: 10.1016/j.ultsonch.2019.104800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound (US) is a promising method to address clogging and mixing issues in microreactors (MR). So far, low frequency US (LFUS), pulsed LFUS and high frequency US (HFUS) have been used independently in MR for particle synthesis to achieve narrow particle size distributions (PSD). In this work, we critically assess the advantages and disadvantages of each US application method for the case study of calcium carbonate synthesis in an ultrasonic microreactor (USMR) setup operating at both LFUS (61.7 kHz, 8 W) and HFUS (1.24 MHz, 1.6 W). Furthermore, we have developed a novel approach to switch between LFUS and HFUS in an alternating manner, allowing us to quantify the synergistic effect of performing particle synthesis under two different US conditions. The reactor was fabricated by gluing a piezoelectric plate transducer to a silicon microfluidic chip. The results show that independently applying HFUS and LFUS produces a narrower PSD compared to silent conditions. However, at lower flow rates HFUS leads to agglomerate formation, while the reaction conversion is not enhanced due to weak mixing effects. LFUS on the other hand eliminates particle agglomerates and increases the conversion due to the strong cavitation effect. However, the required larger power input leads to a steep temperature rise in the reactor and the risk of reactor damage for long-term operation. While pulsed LFUS reduces the temperature rise, this application mode leads again to the formation of particle agglomerates, especially at low LFUS percentage. The proposed application mode of switching between LFUS and HFUS is proven to combine the advantages of both LFUS and HFUS, and results in particles with a unimodal narrow PSD (one order of magnitude reduction in the average size and span compared to silent conditions) and negligible rise of the reactor temperature.
Collapse
Affiliation(s)
- Zhengya Dong
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
16
|
Sharma MK, Raval J, Ahn GN, Kim DP, Kulkarni AA. Assessing the impact of deviations in optimized multistep flow synthesis on the scale-up. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00025f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript highlights the unavoidable connection between manual and self-optimized flow synthesis protocols for multistep flow synthesis and its scale-up.
Collapse
Affiliation(s)
- M. K. Sharma
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- AcSIR
| | - J. Raval
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- AcSIR
| | - Gwang-Noh Ahn
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Korea
| | - A. A. Kulkarni
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- AcSIR
| |
Collapse
|
17
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
18
|
Wang M, Zhang M, Zhang M, Aizezi M, Zhang Y, Hu J, Wu G. In-situ mineralized robust polysiloxane–Ag@ZnO on cotton for enhanced photocatalytic and antibacterial activities. Carbohydr Polym 2019; 217:15-25. [DOI: 10.1016/j.carbpol.2019.04.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/17/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
|
19
|
Gao X, Shang Y, Gao K, Fu F. Plasmon Sensitized Heterojunction 2D Ultrathin Ag/AgI-δ-Bi 2O 3 for Enhanced Photocatalytic Nitrogen Fixation. NANOMATERIALS 2019; 9:nano9050781. [PMID: 31121886 PMCID: PMC6567260 DOI: 10.3390/nano9050781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 01/07/2023]
Abstract
A novel 2D ultrathin Ag/AgI-δ-Bi2O3 photocatalyst was constructed by a facile hydrothermal and in situ photodeposition method, which presented a uniform nanosheet structure with an average height of 6 nm. Its composition, morphology and light-harvesting properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrophotometer (UV-vis) and photoluminescence (PL) measurements in detail. The Ag/AgI-δ-Bi2O3 nanocomposites showed an excellent photocatalytic nitrogen fixation performance of 420 μmol L-1 g-1 h-1 in water without any sacrificial agent. The introduction of Ag/AgI nanoparticles caused the morphology modification of δ-Bi2O3, a higher concentration of oxygen vacancy, and the construction of a plasmon sensitized heterojunction, resulting in enhanced light absorption, improved separation efficiency of charge carriers and strong N2 absorption and activation ability, which are responsible for the superior photocatalytic performance of Ag/AgI-δ-Bi2O3.
Collapse
Affiliation(s)
- Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yanan 716000, China.
| | - Yanyan Shang
- Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yanan 716000, China.
| | - Kailong Gao
- Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yanan 716000, China.
| | - Feng Fu
- Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yanan 716000, China.
| |
Collapse
|
20
|
Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p–n heterojunction AgCl/δ-Bi2O3 nanosheets. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Kim KJ, Kreider PB, Ahn HG, Chang CH. Characterization of Cotton Ball-like Au/ZnO Photocatalyst Synthesized in a Micro-Reactor. MICROMACHINES 2018; 9:E322. [PMID: 30424255 PMCID: PMC6082253 DOI: 10.3390/mi9070322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022]
Abstract
Noble metal/metal oxide nanostructures are an efficient system in photocatalysis. Continuous and scalable production of advanced particle systems will be a requirement for commercial-scale deployment for many applications, including photocatalysis. In this work, Au/ZnO structures were synthesized in a continuous flow micro-reactor at room temperature and the detailed characteristics of the product indicate a specific cotton ball-like core-shell microstructure that showcases specific advantages compared to traditional batch synthesis methods. The formation pathway of the core-shell Au/ZnO structures is discussed with the pH-dependent speciation diagram, and photocatalytic activity was assessed under simulated sunlight, demonstrating the enhanced performance of the cotton ball-like Au/ZnO microstructures in photocatalytic dye degradation. This work describes the application of microreaction technology in the continuous production of metal/metal oxide photocatalysts.
Collapse
Affiliation(s)
- Ki-Joong Kim
- National Energy Technology Laboratory (NETL), U. S. Department of Energy, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
| | - Peter B Kreider
- Research School of Engineering, The Australian National University, Canberra, ACT 2602, Australia.
| | - Ho-Geun Ahn
- Department of Chemical Engineering, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea.
| | - Chih-Hung Chang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|