1
|
Yang XM, Wang XY, Tang Y. The Chemical Recovery of PMMA into Monomer. Chemistry 2024:e202404030. [PMID: 39663826 DOI: 10.1002/chem.202404030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Polymethyl methacrylate (PMMA), commonly known as plexiglass, is widely used in the areas of aircraft, automobile, construction and transplants, due to its high mechanical strength, good corrosion resistance, and excellent compatibility with human tissue. With the increase in production and usage of PMMA, the vast accumulation of PMMA waste has posed a challenge to the recycling of PMMA waste. However, at present, only less than 10 % of PMMA is recycled each year. The cost-effective chemical recovery of PMMA into monomer with high efficiency has attracted wide attention and has become one of the hot research subjects. The chemical recovery of PMMA into monomer are realized mainly via two approaches, including the pyrolysis of common PMMA at high temperature and the depolymerization of end-functionalized PMMA under mild conditions. The second approach has emerged and achieved significant progresses in the past several years. Herein, we provide a review about the researches of chemical recovery of PMMA into monomer. Firstly, the pyrolysis of general PMMA at high temperature is illustrated by typical research works. Subsequently, the depolymerization of end-functionalized PMMA under mild conditions is highlighted and discussed, as this approach is more in line with the green and sustainable development of polymer chemistry.
Collapse
Affiliation(s)
- Xi-Man Yang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Yan Wang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Tanaka J, Li J, Clouthier SM, You W. Step-growth polymerization by the RAFT process. Chem Commun (Camb) 2023. [PMID: 37287313 DOI: 10.1039/d3cc01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible Addition-Fragmentation Chain Transfer (RAFT) step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone). This new polymerization method is generally achieved by using bifunctional reagents of monomer and Chain Transfer Agent (CTA), that efficiently yield Single Monomer Unit Insertion (SUMI) adducts under stoichiometrically balanced conditions. This review covers a brief history of the RAFT-SUMI process and its transformation into RAFT step-growth polymerization, followed by a comprehensive discussion of various RAFT step-growth systems. Furthermore, characterizing the molecular weight evolution of step-growth polymerization is elaborated based on the Flory model. Finally, a formula is introduced to describe the efficiency of the RAFT-SUMI process, assuming rapid chain transfer equilibrium. Examples of reported RAFT step-growth and SUMI systems are then categorized based on the driving force.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jiajia Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | | | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Förster C, Lehn R, Andrieu-Brunsen A. Automated Multi- and Block-Copolymer Writing in Mesoporous Films Using Visible-Light PET-RAFT and a Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207762. [PMID: 36651003 DOI: 10.1002/smll.202207762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/17/2023]
Abstract
For high throughput applications, e.g., in the context of sensing especially when being combined with machine learning, large sample numbers in acceptable production time are required. This needs automated synthesis and material functionalization concepts ideally combined with high precision. To automate sensing relevant mesopore polymer functionalization while being highly precise in polymer placement, polymer amount control, and polymer sequence design, a process for polymer writing in mesoporous silica films with pore diameter in the range of 13 nm is developed. Mesoporous films are functionalized with different polymers in adjustable polymer amount including block-copolymer functionalization in an automated process using a visible-light induced, controlled photo electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. While transferring this PET-RAFT to a commercially available microscope, direct, automated laser writing of three different polymers, as well as polymer re-initiation is demonstrated. Using a laser diameter of ≈72 µm, significantly smaller polymer spots of ≈7 µm in diameter are realized. Micrometerscale resolved polymer images including block-copolymers are written into mesoporous layers covering millimeter scale areas requiring a writing time in the range of one second per polymer spot.
Collapse
Affiliation(s)
- Claire Förster
- Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Robert Lehn
- Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Bellotti V, Parkatzidis K, Wang HS, De Alwis Watuthanthrige N, Orfano M, Monguzzi A, Truong NP, Simonutti R, Anastasaki A. Light-accelerated depolymerization catalyzed by Eosin Y. Polym Chem 2023; 14:253-258. [PMID: 36760607 PMCID: PMC9843692 DOI: 10.1039/d2py01383e] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.
Collapse
Affiliation(s)
- Valentina Bellotti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | | | - Matteo Orfano
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Angelo Monguzzi
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Roberto Simonutti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| |
Collapse
|
5
|
Wanasinghe SV, Sun M, Yehl K, Cuthbert J, Matyjaszewski K, Konkolewicz D. PET-RAFT Increases Uniformity in Polymer Networks. ACS Macro Lett 2022; 11:1156-1161. [PMID: 36069541 DOI: 10.1021/acsmacrolett.2c00448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoinduced electron/energy transfer (PET)-reversible addition-fragmentation chain transfer polymerization (RAFT) and conventional photoinitiated RAFT were used to synthesize polymer networks. In this study, two different metal catalysts, namely, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) and zinc tetraphenylporphyrin (ZnTPP), were selected to generate two different catalytic pathways, one with Ir(ppy)3 proceeding through an energy-transfer pathway and one with ZnTPP proceeding through an electron-transfer pathway. These PET-RAFT systems were contrasted against a conventional photoinitated RAFT process. Mechanically robust materials were generated. Using bulk swelling ratios and degradable cross-linkers, the homogeneity of the networks was evaluated. Especially at high primary chain length and cross-link density, the PET-RAFT systems generated more uniform networks than those made by conventional RAFT, with the electron transfer-based ZnTPP giving superior results to those of Ir(ppy)3. The ability to deactivate radicals either by RAFT exchange or reversible coupling in PET RAFT was proposed as the mechanism that gave better control in PET-RAFT systems.
Collapse
Affiliation(s)
- Shiwanka V Wanasinghe
- Department of Chemistry and Biochemistry, Miami University, 651 E High Street, Oxford, Ohio 45056, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, 651 E High Street, Oxford, Ohio 45056, United States
| | - Julia Cuthbert
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Martinez MR, Dworakowska S, Gorczyński A, Szczepaniak G, Bossa FDL, Matyjaszewski K. Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2‐(oligo(ethylene oxide) methyl ether)acrylate macromonomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Sylwia Dworakowska
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Department of Biotechnology and Renewable Materials, Faculty of Chemical Engineering and Technology Cracow University of Technology Cracow Poland
| | - Adam Gorczyński
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Faculty of Chemistry Adam Mickiewicz University Poznań Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
8
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
9
|
Kearns MM, Morley CN, Parkatzidis K, Whitfield R, Sponza AD, Chakma P, De Alwis Watuthanthrige N, Chiu M, Anastasaki A, Konkolewicz D. A general model for the ideal chain length distributions of polymers made with reversible deactivation. Polym Chem 2022. [DOI: 10.1039/d1py01331a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A general model is developed for the distribution of polymers made with reversible deactivation. The model is applied to a range of experimental systems including RAFT, cationic and ATRP.
Collapse
Affiliation(s)
- Madison M. Kearns
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Colleen N. Morley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Alvaro D. Sponza
- Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
| | - Progyateg Chakma
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | | | - Melanie Chiu
- Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
10
|
Zhou J, Sun Y, Huang Z, Luo Z, Hu H. Improved antifouling and drug delivery properties of polyvinyl alcohol hydrogel by grafting with N‐isopropylacrylamide via organic dye photocatalyzed
PET‐RAFT
polymerization. J Appl Polym Sci 2021. [DOI: 10.1002/app.51395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinsheng Zhou
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Yugui Sun
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Zixiang Huang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Zhongkuan Luo
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Huiyuan Hu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| |
Collapse
|
11
|
Bradford KGE, Petit LM, Whitfield R, Anastasaki A, Barner-Kowollik C, Konkolewicz D. Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2021; 143:17769-17777. [PMID: 34662103 DOI: 10.1021/jacs.1c08654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization is one of the most powerful reversible deactivation radical polymerization (RDRP) processes. Rate retardation is prevalent in RAFT and occurs when polymerization rates deviate from ideal conventional radical polymerization kinetics. Herein, we explore beyond what was initially thought to be the culprit of rate retardation: dithiobenzoate chain transfer agents (CTA) with more active monomers (MAMs). Remarkably, polymerizations showed that rate retardation occurs in systems encompassing the use of trithiocarbonates and xanthates CTAs with varying monomeric activities. Both the simple slow fragmentation and intermediate radical termination models show that retardation of all these systems can be described by using a single relationship for a variety of monomer reactivity and CTAs, suggesting rate retardation is a universal phenomenon of varying severity, independent of CTA composition and monomeric activity level.
Collapse
Affiliation(s)
- Kate G E Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Leilah M Petit
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8092, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8092, Switzerland
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
12
|
Tong Y, Liu Y, Chen Q, Mo Y, Ma Y. Long-Lived Triplet Excited-State Bichromophoric Iridium Photocatalysts for Controlled Photo-Mediated Atom-Transfer Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yitian Mo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Burridge KM, Parnell RF, Kearns MM, Page RC, Konkolewicz D. Two-distinct polymer ubiquitin conjugates by photochemical grafting-from. MACROMOL CHEM PHYS 2021; 222:2100091. [PMID: 34421281 PMCID: PMC8376180 DOI: 10.1002/macp.202100091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Protein-polymer bioconjugates present a way to make enzymes more efficient and robust for industrial and medicinal applications. While much work has focused on mono-functional conjugates, i.e. conjugates with one type of polymer attached such as poly(ethylene glycol) or poly(N-isopropylacrylamide), there is a practical interest in gaining additional functionality by synthesizing well-defined bifunctional conjugates in a hetero-arm star copolymer architecture with protein as the core. Using ubiquitin as a model protein, a synthetic scheme was developed to attach two different polymers (OEOMA and DMAm) directly to the protein surface, using orthogonal conjugation chemistries and grafting-from by photochemical living radical polymerization techniques. The additional complexity arising from attempts to selectively modify multiple sites led to decreased polymerization performance and indicates that ICAR-ATRP and RAFT are not well-suited to bifunctional bioconjugates applications. Nonetheless, the polymerization conditions preserve the native fold of the ubiquitin and enable production of a hetero-arm star protein-polymer bioconjugate.
Collapse
Affiliation(s)
- Kevin M. Burridge
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Ryan F. Parnell
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Madison M. Kearns
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
15
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
16
|
Zhang L, Liu R, Huang Z, Xu J. How does the single unit monomer insertion technique promote kinetic analysis of activation and initiation in photo-RAFT processes? Polym Chem 2021. [DOI: 10.1039/d0py01413c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The single unit monomer insertion technique provides a simple platform for the kinetic investigation of early stage of photo-RAFT process that comprises photo-activation of initial RAFT agents and addition of RAFT leaving radicals to the monomers.
Collapse
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Ruizhe Liu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Zixuan Huang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
17
|
Bainbridge CWA, Broderick N, Jin J. RAFT agent symmetry and the effects on photo-growth behavior in living polymer networks. Polym Chem 2021. [DOI: 10.1039/d1py00796c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we describe how different symmetries of RAFT agent act after growth. Asymmetric networks showed a pore-filling behaviour, while symmetric networks underwent mesh-expansion.
Collapse
Affiliation(s)
- Chris William Anderson Bainbridge
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| | - Neil Broderick
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| | - Jianyong Jin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
19
|
Liu YX, Bian C, Zhou YN, Li JJ, Luo ZH. Kinetic Study on Ultraviolet Light-Induced Solution Atom Transfer Radical Polymerization of Methyl Acrylate Using TiO 2. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Xing Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Bian
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
20
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
McClelland KP, Clemons TD, Stupp SI, Weiss EA. Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization. ACS Macro Lett 2020; 9:7-13. [PMID: 35638658 DOI: 10.1021/acsmacrolett.9b00891] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This Letter describes the use of CdSe quantum dots (QDs) as photocatalysts for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of a series of aqueous acrylamides and acrylates. The high colloidal solubility and photostability of these QDs allowed polymerization to occur with high efficiency (>90% conversion in 2.5 h), low dispersity (PDI < 1.1), and ultralow catalyst loading (<0.5 ppm). The use of protein concentrators enabled the removal of the photocatalyst from the polymer and monomer with tolerable metal contamination (8.41 ug/g). These isolated QDs could be recycled for four separate polymerizations without a significant decrease in efficiency. By changing the pore size of the protein concentrators, the QDs and polymer could be separated from the remaining monomer, allowing for the synthesis of block copolymers using a single batch of QDs with minimal purification steps and demonstrating the fidelity of chain ends.
Collapse
Affiliation(s)
| | - Tristan D. Clemons
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | | |
Collapse
|
22
|
Judzewitsch PR, Corrigan N, Trujillo F, Xu J, Moad G, Hawker CJ, Wong EHH, Boyer C. High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02207] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Peter R. Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Francisco Trujillo
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Graeme Moad
- Manufacturing, CSIRO, Bag 10, Clayton South, VIC 3169, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Parkatzidis K, Truong NP, Antonopoulou MN, Whitfield R, Konkolewicz D, Anastasaki A. Tailoring polymer dispersity by mixing chain transfer agents in PET-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00823k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report a simple and versatile batch methodology to tailor polymer dispersity utilizing PET-RAFT polymerization.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | | | - Richard Whitfield
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | | | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| |
Collapse
|
24
|
Gu Y, Wang Z, Gong H, Chen M. Investigations into CTA-differentiation-involving polymerization of fluorous monomers: exploitation of experimental variances in fine-tuning of molecular weights. Polym Chem 2020. [DOI: 10.1039/d0py01366h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Condition and substrate effects on CTA-differentiation-involving polymerization were explored for logical control of molecular weight.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Honghong Gong
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
25
|
Hu L, Wang Q, Zhang X, Zhao H, Cui Z, Fu P, Liu M, Liu N, He S, Pang X, Qiao X. Light and magnetism dual-gated photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. RSC Adv 2020; 10:6850-6857. [PMID: 35493912 PMCID: PMC9049777 DOI: 10.1039/d0ra00401d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
PET-RAFT polymerization can be reversibly ceased in the absence of light or under an external magnetic field with a novel raspberry-like γ-Fe2O3@CD nanocatalyst.
Collapse
|
26
|
Kuhn LR, Allegrezza ML, Dougher NJ, Konkolewicz D. Using Kinetic Modeling and Experimental Data to Evaluate Mechanisms in PET‐RAFT. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leah R. Kuhn
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| | - Michael L. Allegrezza
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| | - Nicholas J. Dougher
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University, 651 E High St. Oxford Ohio 45056
| |
Collapse
|
27
|
De Alwis Watuthanthrige N, Allegrezza ML, Dolan MT, Kloster AJ, Kovaliov M, Averick S, Konkolewicz D. In‐situ Chemiluminescence‐Driven Reversible Addition–Fragmentation Chain‐Transfer Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Michael L. Allegrezza
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| | - Madison T. Dolan
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| | - Alex J. Kloster
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| | - Marina Kovaliov
- Neuroscience Institute Allegheny Health Network 320 East North Ave Pittsburgh PA 15212 USA
| | - Saadyah Averick
- Neuroscience Institute Allegheny Health Network 320 East North Ave Pittsburgh PA 15212 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| |
Collapse
|
28
|
De Alwis Watuthanthrige N, Allegrezza ML, Dolan MT, Kloster AJ, Kovaliov M, Averick S, Konkolewicz D. In‐situ Chemiluminescence‐Driven Reversible Addition–Fragmentation Chain‐Transfer Photopolymerization. Angew Chem Int Ed Engl 2019; 58:11826-11829. [DOI: 10.1002/anie.201905317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
| | - Michael L. Allegrezza
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| | - Madison T. Dolan
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| | - Alex J. Kloster
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| | - Marina Kovaliov
- Neuroscience Institute Allegheny Health Network 320 East North Ave Pittsburgh PA 15212 USA
| | - Saadyah Averick
- Neuroscience Institute Allegheny Health Network 320 East North Ave Pittsburgh PA 15212 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry Miami University 651 E High Street Oxford OH 45011 USA
| |
Collapse
|
29
|
Cao H, Wang G, Xue Y, Yang G, Tian J, Liu F, Zhang W. Far-Red Light-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization Using a Man-Made Bacteriochlorin. ACS Macro Lett 2019; 8:616-622. [PMID: 35619366 DOI: 10.1021/acsmacrolett.9b00320] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To overcome the challenge of photoregulated living radical polymerization in long-wavelength radiation, a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization in far-red wavelength (λmax = 740 nm) is reported by using a man-made bacteriochlorin as a photocatalyst. A reduced tetraphenylporphyrin (RTPP) having a natural bacteriochlorin macrocycle ring with two reduced pyrrole rings was synthesized with strong absorption in the far-red light region (700-765 nm) and applied for the PET-RAFT polymerization as a photoredox catalyst, which offered excellent control over molecular weight and polydispersities and oxygen tolerance for the polymerization of (methyl) acrylates monomers, and exhibited attractive features of "living" radical polymerization. Benefiting from high penetration of far-red light, the polymerization was also well-controlled when the reaction vessel was covered by translucent animal tissue barriers, for example, skin.
Collapse
Affiliation(s)
- Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guicheng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Reeves JA, De Alwis Watuthanthrige N, Boyer C, Konkolewicz D. Intrinsic and Catalyzed Photochemistry of Phenylvinylketone for Wavelength‐Sensitive Controlled Polymerization. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Reeves
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| | | | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering, and Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| |
Collapse
|
31
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805473] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| |
Collapse
|
32
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019; 58:5170-5189. [PMID: 30066456 DOI: 10.1002/anie.201805473] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The application of photochemistry to polymer and material science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and advanced materials production. Using light to activate chemical reaction pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are advancing materials production through their exploitation of photochemistry.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| |
Collapse
|
33
|
Meng X, Lu H, Li Z, Wang C, Liu R, Guan X, Yagci Y. Near-infrared light induced cationic polymerization based on upconversion and ferrocenium photochemistry. Polym Chem 2019. [DOI: 10.1039/c9py01262a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrocenium salts as unimolecular photoinitiators can efficiently initiate upconversion nanoparticle-assisted cationic photopolymerization under near-infrared light excitation.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Huaqiao Lu
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Zhiquan Li
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Chen Wang
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Ren Liu
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xin Guan
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Yusuf Yagci
- Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
34
|
Zhang Y, Wen X, Shi Y, Yue R, Bai L, Liu Q, Ba X. Sulfur-Containing Polymer As a Platform for Synthesis of Size-Controlled Pd Nanoparticles for Selective Semihydrogenation of Alkynes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuangong Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Xin Wen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Yongqing Shi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Ru Yue
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Libin Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Qingtao Liu
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People’s Republic of China
| | - Xinwu Ba
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| |
Collapse
|
35
|
|
36
|
Danielson AP, Van-Kuren DB, Bornstein JP, Kozuszek CT, Berberich JA, Page RC, Konkolewicz D. Investigating the Mechanism of Horseradish Peroxidase as a RAFT-Initiase. Polymers (Basel) 2018; 10:E741. [PMID: 30960666 PMCID: PMC6403633 DOI: 10.3390/polym10070741] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022] Open
Abstract
A detailed mechanistic and kinetic study of enzymatically initiated RAFT polymerization is performed by combining enzymatic assays and polymerization kinetics analysis. Horseradish peroxidase (HRP) initiated RAFT polymerization of dimethylacrylamide (DMAm) was studied. This polymerization was controlled by 2-(propionic acid)ylethyl trithiocarbonate (PAETC) in the presence of H₂O₂ as a substrate and acetylacetone (ACAC) as a mediator. In general, well controlled polymers with narrow molecular weight distributions and good agreement between theoretical and measured molecular weights are consistently obtained by this method. Kinetic and enzymatic assay analyses show that HRP loading accelerates the reaction, with a critical concentration of ACAC needed to effectively generate polymerization initiating radicals. The PAETC RAFT agent is required to control the reaction, although the RAFT agent also has an inhibitory effect on enzymatic performance and polymerization. Interestingly, although H₂O₂ is the substrate for HRP there is an optimal concentration near 1 mM, under the conditions studies, with higher or lower concentrations leading to lower polymerization rates and poorer enzymatic activity. This is explained through a competition between the H₂O₂ acting as a substrate, but also an inhibitor of HRP at high concentrations.
Collapse
Affiliation(s)
- Alex P Danielson
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Dylan Bailey Van-Kuren
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Joshua P Bornstein
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Caleb T Kozuszek
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Jason A Berberich
- Department of Chemical, Paper and Biomedical Engineering Miami University 650 E High St, Oxford, OH 45056, USA.
| | - Richard C Page
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry Miami University 651 E High St, Oxford, OH 45056, USA.
| |
Collapse
|
37
|
Wang Y, Dadashi-Silab S, Matyjaszewski K. Photoinduced Miniemulsion Atom Transfer Radical Polymerization. ACS Macro Lett 2018; 7:720-725. [PMID: 35632954 DOI: 10.1021/acsmacrolett.8b00371] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photomediated atom transfer radical polymerization (photoATRP) of (meth)acrylic monomers was conducted in miniemulsion media. The polymerization procedures took advantage of an ion-pair catalyst formed by interaction of Cu/TPMA2 (TPMA = tris(2-pyridylmethyl)amine) and an anionic surfactant, sodium dodecyl sulfate (SDS). The ion-pair catalyst was efficient in controlling ATRP reactions with catalyst loadings as low as 100 ppm. The effect of different polymerization parameters, such as the size of the reaction vial, amount of surfactant, and solids content influencing the photoATRP in miniemulsion, was studied. The polymerization was conducted with solids content ranging from 5 to 50 vol % under a moderate surfactant loading (<5 wt % relative to monomer). Excellent temporal control was achieved upon switching the UV light on and off multiple times, and the polymer was successfully chain extended, indicating high retention of chain-end fidelity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
38
|
Phommalysack-Lovan J, Chu Y, Boyer C, Xu J. PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem Commun (Camb) 2018; 54:6591-6606. [DOI: 10.1039/c8cc02783h] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) process has opened up a new way of precision polymer manufacturing to satisfy the concept of green chemistry.
Collapse
Affiliation(s)
- Jamie Phommalysack-Lovan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|