Hu D, Zeng X, Lin Y, Chen Y, Chen W, Jia Z, Lin J. High Value-Added Reutilization of Waste-Printed Circuit Boards Non-Metallic Components in Sustainable Polymer Composites.
Molecules 2023;
28:6199. [PMID:
37687027 PMCID:
PMC10489137 DOI:
10.3390/molecules28176199]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The reutilization non-metallic components from a waste-printed circuit board (WPCB) has become one of the most significant bottlenecks in the comprehensive reuse of electronic wastes due to its low value and complex compositions, and it has received great attention from scientific and industrial researchers. To effectively address the environmental pollution caused by inappropriate recycling methods, such as incineration and landfill, extensive efforts have been dedicated to achieving the high value-added reutilization of WPCB non-metals in sustainable polymer composites. In this review, recent progress in developing sustainable polymer composites based on WPCB non-metallic components was systematically summarized. It has been demonstrated that the WPCB non-metals can serve as a promising reinforcing and functional fillers to significantly ameliorate some of the physical and chemical properties of polymer composites, such as excellent mechanical properties, enhanced thermal stability, and flame retardancy. The recovery strategies and composition of WPCB non-metals were also briefly discussed. Finally, the future potentials and remaining challenges regarding the reutilization of WPCB non-metallic components are outlined. This work provides readers with a comprehensive understanding of the preparation, structure, and properties of the polymer composites based on WPCB non-metals, providing significant insights regarding the high value-added reutilization of WPCB non-metals of electronic wastes.
Collapse