1
|
Hou J, Liu M, Gao W, Yan K, Li B, Zheng W, Gong S, Zhang X, Sun W. Understanding the Adsorption and Diffusion Behaviors of PBUT in Biocompatible MOFs. J Phys Chem B 2024; 128:8886-8895. [PMID: 39226469 DOI: 10.1021/acs.jpcb.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the increasing incidence of chronic kidney disease, the effective control of protein-bound uremic toxins (PBUTs), which are difficult to remove through dialysis, has become a priority. In this study, the adsorption and diffusion behaviors of several metal-organic frameworks (MOFs) for PBUTs (indoxyl sulfate and p-cresyl sulfate) were studied by molecular dynamics (MD) simulations and umbrella sampling. For the NU series of MOFs, good correlations between the Gibbs free energy (ΔG) and the experimental clearance rates of PBUTs are found. For the adsorption behaviors, in terms of ΔG, DAJWET exhibits the best adsorption effect for indoxyl sulfate (IS), whereas NU-1000 shows the best effect for p-cresyl sulfate (pCS). Similar trends observed in the radial distribution function and mean square displacement results suggest that the π-π stacking interactions play a crucial role in the adsorption and diffusion of PBUTs by MOFs. Furthermore, it can be concluded that MOFs with highly conjugated groups (porphyrin rings and pyrene groups) tend to generate more PBUT attraction, and provide design principles for potential MOF candidates in the removal of PBUTs.
Collapse
Affiliation(s)
- Junyi Hou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengjie Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqun Gao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kexin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bihong Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weizhong Zheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaomin Gong
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Weizhen Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Wei Z, Zhu J, He Y, Lai J, Pan B, Feng K, Chen L, Cao L, Wang Y, Qian K. Improving the efficiency and environmental safety of emamectin benzoate through a pH-responsive metal-organic framework microencapsulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134847. [PMID: 38885583 DOI: 10.1016/j.jhazmat.2024.134847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.
Collapse
Affiliation(s)
- Zheng Wei
- College of Plant Protection, Southwest University, Chongqing 400715, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academic of Agriculture Sciences, Beijing 100081, China
| | - Jingxuan Zhu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ying He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jie Lai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Bingjie Pan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kaiyang Feng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lihan Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lidong Cao
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academic of Agriculture Sciences, Beijing 100081, China.
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, China.
| |
Collapse
|
3
|
Canturk B, Erarslan Z, Gurdal Y. Noncovalent chemistry of xenon opens the door for anesthetic xenon recovery using Bio-MOFs. Phys Chem Chem Phys 2023; 25:27264-27275. [PMID: 37791455 DOI: 10.1039/d3cp03066k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Designing an inexpensive and highly efficient recovery process for xenon (Xe) is gaining importance in the development of sustainable applications. Using metal organic frameworks (MOFs) for separating Xe from anesthetic gas mixtures has been a recent topic studied rarely and superficially in the literature. We theoretically investigated Xe recovery performances of 43 biological MOFs (Bio-MOFs) formed by biocompatible metal cations and biological endogenous linkers. Xe uptakes and Xe permeabilities in its binary mixtures with CO2, O2, and N2 were investigated by applying Grand Canonical Monte Carlo and Molecular Dynamics simulations. Materials with metalloporphyrin, hexacarboxylate, triazine, or pyrazole ligands, dimetallic paddlewheel units, relatively large pore sizes (PLD > 5 Å and LCD > 10 Å), large void fractions (≈0.8), and large surface areas (>2900 m2 g-1) have been determined as top performing Bio-MOFs for Xe recovery. By applying Density Functional Theory simulations and generating electron density difference maps, we determined that Xe-host interactions in the top performing Bio-MOFs are maximized mainly due to noncovalent interactions of Xe, such as charge-induced dipole and aerogen-π interactions. Polarized Xe atoms in the vicinity of cations/anions as well as π systems are fingerprints of enhanced guest-host interactions. Our results show examples of rarely studied aerogen interactions that play a critical role in selective adsorption of Xe in nanoporous materials.
Collapse
Affiliation(s)
- Behra Canturk
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Balcalι Mah. Güney Kampüs 10 Sokak No. 1U, 01250 Sarιçam, Adana, Türkiye.
| | - Zekiye Erarslan
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Balcalι Mah. Güney Kampüs 10 Sokak No. 1U, 01250 Sarιçam, Adana, Türkiye.
| | - Yeliz Gurdal
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Balcalι Mah. Güney Kampüs 10 Sokak No. 1U, 01250 Sarιçam, Adana, Türkiye.
| |
Collapse
|
4
|
Wei Q, Xue S, Wu W, Liu S, Li S, Zhang C, Jiang S. Plasma Meets MOFs: Synthesis, Modifications, and Functionalities. CHEM REC 2023:e202200263. [PMID: 36633461 DOI: 10.1002/tcr.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/25/2022] [Indexed: 01/13/2023]
Abstract
As a porous and network materials consisting of metals and organic ligands, metal-organic frameworks (MOFs) have become one of excellent crystalline porous materials and play an important role in the era about materials science. Plasma, as a useful tool for stimulating efficient reactions under many conditions, and the plasma-assisted technology gets more attractions and endows MOFs more properties. Based on its feature, the research about the modifications and functionalities of MOFs have been developing a certain extent. This review contains a description of the methods for plasma-assisted modification and synthesis of MOFs, with specifically focusing on the plasma-assisted potential for modifications and functionalities of MOFs. The different applications of plasma-assisted MOFs were also presented.
Collapse
Affiliation(s)
- Qian Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Sen Xue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weijie Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu, 610000, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shahua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Gulcay-Ozcan E, Iacomi P, Rioland G, Maurin G, Devautour-Vinot S. Airborne Toluene Detection Using Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53777-53787. [PMID: 36416767 DOI: 10.1021/acsami.2c15237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pollution of indoor air is a major worldwide concern in our modern society for people's comfort, health, and safety. In particular, toluene, present in many substances including paints, thinners, candles, leathers, cosmetics, inks, and glues, affects the human health even at very low concentrations throughout its action on the central nervous system. Its prevalence in many workplace environments can fluctuate considerably, which led to firm regulation with exposure limits varying between 50 and 400 ppm depending on exposure time. This therefore requires the development of technologies for an accurate detection of this contaminant. Metal-organic frameworks have been proposed as promising candidates to detect and monitor a series of molecules at even extremely low concentrations owing to the high tunability of their functionality. Herein, a high-throughput Monte Carlo screening approach was devised to identify the best MOFs from the computation-ready, experimental (CoRE) metal-organic framework (MOF) density-derived electrostatic and chemical (DDEC) database for the selective capture of toluene from air at room temperature, with the consideration of a ternary mixture composed of extremely low-level concentration of toluene (10 ppm) in oxygen and nitrogen to mimic the composition of air. An aluminum MOF, DUT-4, with channel-like micropores was identified as an excellent candidate for the selective adsorption of toluene from air with a predicted adsorption uptake of 0.5 g/g at 10 ppm concentration and room temperature. The toluene adsorption behavior of DUT-4 at low equivalent concentrations, alongside its sensing performance, was further experimentally investigated by its incorporation in a quartz crystal microbalance sensor, confirming the promises of DUT-4. Decisively, the resulting high sensitivity and fast kinetics of our developed sensor highlight the applicability of this hand-in-hand computational-experimental methodology to porous material screening for sensing applications.
Collapse
Affiliation(s)
- Ezgi Gulcay-Ozcan
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293Montpellier, France
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, 31401Toulouse, Cedex 09, France
| | - Paul Iacomi
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293Montpellier, France
- Surface Measurement Systems, London, HA0 4PE, U.K
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, 31401Toulouse, Cedex 09, France
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293Montpellier, France
| | | |
Collapse
|
6
|
Coelho I, Pires RF, Gonçalves SB, Bonifácio VDB, Faria M. Gas Permeability and Mechanical Properties of Polyurethane-Based Membranes for Blood Oxygenators. MEMBRANES 2022; 12:826. [PMID: 36135845 PMCID: PMC9502098 DOI: 10.3390/membranes12090826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The production of medical devices follows strict guidelines where bio- and hemocompatibility, mechanical strength, and tear resistance are important features. Segmented polyurethanes (PUs) are an important class of polymers that fulfill many of these requirements, thus justifying the investigation of novel derivatives with enhanced properties, such as modulated carbon dioxide and oxygen permeability. In this work, three segmented polyurethane-based membranes, containing blocks of hard segments (HSs) dispersed in a matrix of soft segment (SS) blocks, were prepared by reacting a PU prepolymer (PUR) with tris(hydroxymethyl)aminomethane (TRIS), Congo red (CR) and methyl-β-cyclodextrin (MBCD), rendering PU/TRIS, PU/CR and PU/MBCD membranes. The pure (control) PU membrane exhibited the highest degree of phase segregation between HSs and SSs followed by PU/TRIS and PU/MBCD membranes, and the PU/CR membrane displayed the highest degree of mixing. Pure PU and PU/CR membranes exhibited the highest and lowest values of Young's modulus, tangent moduli and ultimate tensile strength, respectively, suggesting that the introduction of CR increases molecular mobility, thus reducing stiffness. The CO2 permeability was highest for the PU/CR membrane, 347 Barrer, and lowest for the pure PU membrane, 278 Barrer, suggesting that a higher degree of mixing between HSs and SSs leads to higher CO2 permeation rates. The permeability of O2 was similar for all membranes, but ca. 10-fold lower than the CO2 permeability.
Collapse
Affiliation(s)
- Inês Coelho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rita F. Pires
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Sérgio B. Gonçalves
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Bioengeneering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mónica Faria
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Liu S, Lai H, Xing F, Xiao P. Polymer-coated calcium peroxide nanoparticles as an oxygen self-supplying platform for enhanced photodynamic therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Karami Z, Khodaei MM. Post‐synthetic modification of IR-MOF‐3 as acidic-basic heterogeneous catalyst for one-pot synthesis of pyrimido[4,5-b]quinolones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Orhan IB, Daglar H, Keskin S, Le TC, Babarao R. Prediction of O 2/N 2 Selectivity in Metal-Organic Frameworks via High-Throughput Computational Screening and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:736-749. [PMID: 34928569 DOI: 10.1021/acsami.1c18521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Machine learning (ML), which is becoming an increasingly popular tool in various scientific fields, also shows the potential to aid in the screening of materials for diverse applications. In this study, the computation-ready experimental (CoRE) metal-organic framework (MOF) data set for which the O2 and N2 uptakes, self-diffusivities, and Henry's constants were calculated was used to fit the ML models. The obtained models were subsequently employed to predict such properties for a hypothetical MOF (hMOF) data set and to identify structures having a high O2/N2 selectivity at room temperature. The performance of the model on known entries indicated that it would serve as a useful tool for the prediction of MOF characteristics with r2 correlations between the true and predicted values typically falling between 0.7 and 0.8. The use of different descriptor groups (geometric, atom type, and chemical) was studied; the inclusion of all descriptor groups yielded the best overall results. Only a small number of entries surpassed the performance of those in the CoRE MOF set; however, the use of ML was able to present the structure-property relationship and to identity the top performing hMOFs for O2/N2 separation based on the adsorption and diffusion selectivity.
Collapse
Affiliation(s)
- Ibrahim B Orhan
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne Victoria 3001, Australia
- CSIRO Manufacturing Flagship, Clayton, Victoria 3169, Australia
| | - Hilal Daglar
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ravichandar Babarao
- Department of Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne Victoria 3001, Australia
- CSIRO Manufacturing Flagship, Clayton, Victoria 3169, Australia
| |
Collapse
|
10
|
|
11
|
Wang H, Yin Y, Li B, Bai JQ, Wang M. High-Throughput Screening of Metal-Organic Frameworks for the Impure Hydrogen Storage Supplying to a Fuel Cell Vehicle. Transp Porous Media 2021. [DOI: 10.1007/s11242-020-01527-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Venkata Sravani V, Tripathi S, Sreenivasulu B, Kumar S, Maji S, Brahmmananda Rao CVS, Suresh A, Sivaraman N. Post synthetically modified IRMOF-3 for efficient recovery and selective sensing of U(vi) from aqueous medium. RSC Adv 2021; 11:28126-28137. [PMID: 35480724 PMCID: PMC9037992 DOI: 10.1039/d1ra02971a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
A simple and efficient route to develop various novel functionalized MOF materials for rapid and excellent recovery of U(vi) from aqueous medium, along with selective sensing has been demonstrated in the present study. In this connection, a set of four distinct post synthetically modified (PSM) iso-reticular metal organic frameworks were synthesized from IRMOF-3 namely, IRMOF-PC (2-pyridine carboxaldehyde), IRMOF-GA (glutaric anhydride), IRMOF-SMA (sulfamic acid), and IRMOF-DPC (diphenylphosphonic chloride) for the recovery and sensing of U(vi) from aqueous medium. The MOFs were characterized by Fourier transform infrared spectroscopy (FTIR), powder XRD, BET surface area analysis, thermogravimetric analysis (TGA), NMR (13C, 1H and 31P), Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Among all MOFs, post synthetically modified IRMOF-SMA showed enhanced thermal stability of about 420 °C. The MOFs were investigated for U(vi) sorption studies using a batch technique. All the MOFs exhibit excellent sorption capacity towards U(vi) (>90%) and maximum uptake was observed at pH 6. Sorption capacity of MOFs have the following order; IRMOF-3-DPC (300 mg U g-1) > IRMOF-SMA (292 mg U g-1) > IRMOF-PC (289 mg U g-1) > IRMOF-GA (280 mg U g-1) > IRMOF-3 (273 mg U g-1). IRMOF-DPC shows rapid sorption of uranium within 5 min with excellent uptake of U(vi) (>99%). The desorption of U(vi) was examined with different eluents and 0.01 M HNO3 was found to be most effective. The fluorescence sensing studies of U(vi) via IRMOF-3 and its PSM MOFs revealed high sensitivity and selectivity towards U(vi) over other competing rare earth metal ions (La3+, Ce4+, Sm3+, Nd3+, Gd3+, and Eu3+), wherein IRMOF-GA displayed an impressive detection limit of 0.36 mg L-1 for U(vi).
Collapse
Affiliation(s)
- V Venkata Sravani
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 Tamil Nadu India
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - Sarita Tripathi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 Tamil Nadu India
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - B Sreenivasulu
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - Satendra Kumar
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - S Maji
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - C V S Brahmmananda Rao
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 Tamil Nadu India
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - A Suresh
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 Tamil Nadu India
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| | - N Sivaraman
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 Tamil Nadu India
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam-603 102 Tamil Nadu India +91 44 27480500, ext. 24028
| |
Collapse
|
13
|
Daglar H, Erucar I, Keskin S. Recent advances in simulating gas permeation through MOF membranes. MATERIALS ADVANCES 2021; 2:5300-5317. [PMID: 34458845 PMCID: PMC8366394 DOI: 10.1039/d1ma00026h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/21/2021] [Indexed: 05/20/2023]
Abstract
In the last two decades, metal organic frameworks (MOFs) have gained increasing attention in membrane-based gas separations due to their tunable structural properties. Computational methods play a critical role in providing molecular-level information about the membrane properties and identifying the most promising MOF membranes for various gas separations. In this review, we discuss the current state-of-the-art in molecular modeling methods to simulate gas permeation through MOF membranes and review the recent advancements. We finally address current opportunities and challenges of simulating gas permeation through MOF membranes to guide the development of high-performance MOF membranes in the future.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu Sariyer 34450 Istanbul Turkey +90-(212)-338-1362
| | - Ilknur Erucar
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu Sariyer 34450 Istanbul Turkey +90-(212)-338-1362
| |
Collapse
|
14
|
Daglar H, Erucar I, Keskin S. Exploring the performance limits of MOF/polymer MMMs for O2/N2 separation using computational screening. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Melag L, Sadiq MM, Konstas K, Zadehahmadi F, Suzuki K, Hill MR. Performance evaluation of CuBTC composites for room temperature oxygen storage. RSC Adv 2020; 10:40960-40968. [PMID: 35519209 PMCID: PMC9057710 DOI: 10.1039/d0ra07068h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Oxygen is commonly separated from air using cryogenic liquefaction. The inherent energy penalties of phase change inspire the search for energy-efficient separation processes. Here, an alternative approach is presented, where we determine whether it is possible to utilise simpler, stable materials in the right process to achieve overall energy efficiency. Adsorption and release by Metal-Organic Frameworks (MOFs) are an attractive alternative due to their high adsorption and storage capacity at ambient conditions. Cu-BTC/MgFe2O4 composites were prepared, and magnetic induction swing adsorption (MISA) used to release adsorbed oxygen quickly and efficiently. The 3 wt% MgFe2O4 composites exhibited an oxygen uptake capacity of 0.34 mmol g-1 at 298 K and when exposed to a magnetic field of 31 mT, attained a temperature rise of 86 °C and released 100% of adsorbed oxygen. This water vapor stable pelletized system, can be filled and emptied within 10 minutes requiring around 5.6 MJ kg-1 of energy.
Collapse
Affiliation(s)
- Leena Melag
- Department of Chemical Engineering, Monash University Clayton VIC 3168 Australia
| | - M Munir Sadiq
- Department of Chemical Engineering, Monash University Clayton VIC 3168 Australia
| | | | | | - Kiyonori Suzuki
- Department of Materials Science and Engineering, Monash University Clayton VIC 3168 Australia
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University Clayton VIC 3168 Australia
- CSIRO Private Bag 33, Clayton South MDC VIC 3169 Australia
| |
Collapse
|
16
|
Daglar H, Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213470] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Gopalsamy K, Babarao R. Heterometallic Metal Organic Frameworks for Air Separation: A Computational Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karuppasamy Gopalsamy
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ravichandar Babarao
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Flagship, Clayton, Victoria 3169, Australia
| |
Collapse
|
18
|
Phipps J, Chen H, Donovan C, Dominguez D, Morgan S, Weidman B, Fan C, Beyzavi MH. Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26084-26094. [PMID: 32478509 PMCID: PMC7815252 DOI: 10.1021/acsami.0c06964] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, it has been shown that enzyme encapsulation inside metal-organic frameworks (MOFs) can increase enzyme activity and serve as protection from adverse environmental conditions. Little is understood about how the enzymes move into and are held inside the MOFs although it is believed that intermolecular forces between the MOF and the enzyme cause it to be held in place. If this process can be better understood, it can have dramatic implications on the cost-effectiveness and implementation of enzyme-MOF complexes. This is of specific importance in the medical sector for protein therapy and the industrial sector where enzyme use is expected to increase. Herein, we synthesized alcohol dehydrogenase (ADH) and PCN-333 to study encapsulation, stability, and enzyme activity to expand the knowledge of our field and offer a potential improvement to a synthetic route for biofuel synthesis. From this, we found a correlation between the concentration of a buffer and the loading of an enzyme, with surprising loading trends. We conclude that the buffer solution decreases interactions between the enzyme and MOF, supporting conventional theory and allowing it to penetrate deeper into the structure causing higher enzyme loading while allowing for excellent stability over time at various pH values and temperatures and after multiple reactions. We also observe new trends such as a rebounding effect in loading and "out-of-bounds" reactions.
Collapse
Affiliation(s)
- Josh Phipps
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Connor Donovan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Dylan Dominguez
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sydney Morgan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Barrett Weidman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - M. Hassan Beyzavi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
- Corresponding Author: Address correspondence to M. Hassan Beyzavi, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 345 N Campus Dr., Fayetteville, AR 72701 USA.
| |
Collapse
|
19
|
Synthesis and characterization of butylamine-functionalized Cr(III)–MOF–SO3H: Synergistic effect of the hydrophobic moiety on Cr(III)–MOF–SO3H in esterification reactions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|