1
|
Essehli R, Aïssa B, Altamash T, Lachkar M, Atilhan M, El Bali B, Berdiyorov GR, Amhamed A. Efficient crystal structure materials as reactive sorbent for the CO 2 and CH 4 adsorption and storage. Sci Rep 2024; 14:6599. [PMID: 38503813 PMCID: PMC10951319 DOI: 10.1038/s41598-024-57060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
The efficient dirubidium cobalt bis(dihydrogendiphosphate) dihydrate compound is successfully synthesized in a solution and used as a reactive sorbent for the CO2 and CH4 gases adsorption and storage. A crystal of this Rb2Co(H2P2O7)2·2H2O compound has been isolated and characterized by single X-ray diffraction analysis and was found to crystallize in the triclinic system ( P 1 ¯ ) with the cell parameters (Å): 6.980(1), 7.370(1), 7.816(1), 81.74(1), 70.35(1), 86.34(1); V = 374.68(9) Å3, Z = 2. The crystal-packing consists of a three-dimensional framework made upon corners and edges sharing of [RbO7], [H2P2O7] and [CoO6] entities, furthermore linked by a network of H-bonds. The UV-Vis spectroscopy revealed usual transitions between the ground state 4T1g and the upper levels 4T2g, 4A2g and 4T1g (P). Moreover, the CO2 and CH4 gases sorption measurements were successfully performed at two different temperatures (25 and 45 °C) and various pressures ranging from vacuum to 50 bar. Our results show that rate of CO2 and CH4 capturing was 3.10 mmol/g and 2.35 mmol/g at temperature 25 °C and pressure 50 bar, respectively. This compound showed a clear potential for CO2/CH4 adsorption and storage thereby paving the way towards its exploration and adaptation for capturing and collecting carbon dioxide and greenhouse gases from the air, and their conversion into hydrocarbon fuels using existing mature technologies. We have also conducted density functional theory calculations to study the CO2 and CH4 adsorption properties of Rb2Co(H2P2O7)2·2H2O. The simulation results show enhanced adsorption of both types of molecules on the surface of the material.
Collapse
Affiliation(s)
- R Essehli
- Energy and Transportation Science Division, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - B Aïssa
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - T Altamash
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - M Lachkar
- University Sidi Mohamed Ben Abdellah, Fez City, Morocco
| | - M Atilhan
- Department of Chemical and Paper Engineering, Western Michigan University, Floyd Hall, A-230, Kalamazoo, MI, 49008, USA
| | - B El Bali
- Laboratory of Mineral Solid and Analytical Chemistry, "LMSAC", Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000, Oujda, Morocco
| | - G R Berdiyorov
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - A Amhamed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
2
|
Malik A, Kashyap HK. Solvation Shell Anatomy of H 2S and CO Dissolved in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:10392-10403. [PMID: 37983272 DOI: 10.1021/acs.jpcb.3c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Rising atmospheric concentrations of anthropogenic hydrogen sulfide (H2S) and carbon monoxide (CO) as a result of industrialization have encouraged researchers to explore innovative technologies for capturing these gases. Deep eutectic solvents (DESs) are an alternative media for mitigating H2S and CO emissions. Herein, we have employed ab initio molecular dynamics simulations to investigate the structures of the nearest-neighbor solvation shells surrounding H2S and CO when they are dissolved in reline and ethaline DESs. We aim to delineate the structural arrangement responsible for favorable H2S and CO capture by analyzing the key interactions between H2S and CO solutes with various components of the DESs. We observe that in the reline-H2S system, chloride and carbonyl oxygen of urea are found to have the closest distance interaction with hydrogen atoms of the H2S solute. The sulfur atom of H2S is found to be predominantly solvated by hydrogen and oxygen atoms of urea molecules and the hydroxyl hydrogen of choline cations. The chloride ions and ethylene glycol molecules predominantly govern the solvation of H2S in the ethaline-H2S system. In both the DESs, H2S is solvated by the hydroxyl group of the choline cations rather than by their ammonium group. In the reline-CO system, all the atoms of urea along with chloride dominate the immediate solvation shell around CO. In the ethaline-CO system, hydroxyl oxygen and hydrogen atoms of ethylene glycol are found in the nearest solvation structure around CO. Both the DESs exhibit a stronger solvent-solute charge-transfer tendency toward the H2S solute compared to CO.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Malik A, Kashyap HK. Solvation Shell Structures of Ammonia in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:2499-2510. [PMID: 36912865 DOI: 10.1021/acs.jpcb.2c07929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Because of increasing atmospheric anthropogenic ammonia (NH3) emission, researchers are devising new techniques to capture NH3. Deep eutectic solvents (DESs) are found as potential media for NH3 mitigation. In the present study, we have carried out ab initio molecular dynamics (AIMD) simulations to decipher the solvation shell structures of an ammonia solute in reline (1:2 mixture of choline chloride and urea) and ethaline (1:2 mixture of choline chloride and ethylene glycol) DESs. We aim to resolve the fundamental interactions which help stabilize NH3 in these DESs, focusing on the structural arrangement of the DES species in the nearest solvation shell around NH3 solute. In reline, the hydrogen atoms of NH3 are preferentially solvated by chloride anions and the carbonyl oxygen atoms of urea. The nitrogen atom of NH3 renders hydrogen bonding with hydroxyl hydrogen of the choline cation. The positively charged head groups of the choline cations prefer to stay away from NH3 solute. In ethaline, strong hydrogen bonding interaction exists between the nitrogen atom of NH3 and hydroxyl hydrogen atoms of ethylene glycol. The hydrogen atoms of NH3 are found to be solvated by hydroxyl oxygen atoms of ethylene glycol and choline cation. While ethylene glycol molecules play a crucial role in solvating NH3, the chloride anions remain passive in deciding the first solvation shell. In both the DESs, choline cations approach NH3 from their hydroxyl group side. We observe slightly stronger solute-solvent charge transfer and hydrogen bonding interaction in ethaline than those in reline.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Devi M, Moral R, Thakuria S, Mitra A, Paul S. Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques. ACS OMEGA 2023; 8:9702-9728. [PMID: 36969397 PMCID: PMC10034849 DOI: 10.1021/acsomega.2c07684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvents (DESs) are multicomponent designer solvents that exist as stable liquids over a wide range of temperatures. Over the last two decades, research has been dedicated to developing noncytotoxic, biodegradable, and biocompatible DESs to replace commercially available toxic organic solvents. However, most of the DESs formulated until now are hydrophilic and disintegrate via dissolution on coming in contact with the aqueous phase. To expand the repertoire of DESs as green solvents, hydrophobic DESs (HDESs) were prepared as an alternative. The hydrophobicity is a consequence of the constituents and can be modified according to the nature of the application. Due to their immiscibility, HDESs induce phase segregation in an aqueous solution and thus can be utilized as an extracting medium for a multitude of compounds. Here, we review literature reporting the usage of HDESs for the extraction of various organic compounds and metal ions from aqueous solutions and absorption of gases like CO2. We also discuss the techniques currently employed in the extraction processes. We have delineated the limitations that might reduce the applicability of these solvents and also discussed examples of how DESs behave as reaction media. Our review presents the possibility of HDESs being used as substitutes for conventional organic solvents.
Collapse
Affiliation(s)
| | | | | | | | - Sandip Paul
- . Phone: +91-361-2582321. Fax: +91-361-2582349
| |
Collapse
|
5
|
Separation of Methanol and Ethanol from Azeotropic MTBE Mixtures Using Choline Chloride-Based Deep Eutectic Solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Green monoterpenes based deep eutectic solvents for effective BTEX absorption from biogas. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Malik A, Kashyap HK. Solvent Organization around Methane Dissolved in Archetypal Reline and Ethaline Deep Eutectic Solvents as Revealed by AIMD Investigation. J Phys Chem B 2022; 126:6472-6482. [PMID: 35977089 DOI: 10.1021/acs.jpcb.2c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of the rising concentration of harmful greenhouse gases like methane in the atmosphere, researchers are striving for developing novel techniques for capturing these gases. Recently, neoteric liquids such as deep eutectic solvents (DESs) have emerged as an efficient means of sequestration of methane. Herein, we have performed ab initio molecular dynamics (AIMD) simulations to elucidate the solvation structure around a methane molecule dissolved in reline and ethaline DESs. We aim to elicit the structural organization of different constituents of the DESs in the vicinity of methane, particularly highlighting the key interactions that stabilize such gases in DESs. We observe quite different solvation structures of methane in the two DESs. In ethaline, chloride ions play an active role in solvating methane. Instead, in reline, chloride ions do not interact much with the methane molecule in the first solvation shell. In reline, choline cations approach the methane molecule from their hydroxyl group side, whereas urea molecules approach methane from their carbonyl oxygen as well as amide group sides. In ethaline, ethylene glycol and Cl- dominate the nearest neighbor solvation structure around the methane molecule. In both the DESs, we do not observe any significant methane-DES charge transfer interactions, apart from what is present between choline cation and Cl- anion.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
8
|
Fluorescent Zn(II)-Based Metal-Organic Framework: Interaction with Organic Solvents and CO 2 and Methane Capture. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123845. [PMID: 35744975 PMCID: PMC9228242 DOI: 10.3390/molecules27123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022]
Abstract
Adsorption of carbon dioxide (CO2), as well as many other kinds of small molecules, is of importance for industrial and sensing applications. Metal-organic framework (MOF)-based adsorbents are spotlighted for such applications. An essential for MOF adsorbent application is a simple and easy fabrication process, preferably from a cheap, sustainable, and environmentally friendly ligand. Herein, we fabricated a novel structural, thermally stable MOF with fluorescence properties, namely Zn [5-oxo-2,3-dihydro-5H-[1,3]-thiazolo [3,2-a]pyridine-3,7-dicarboxylic acid (TPDCA)] • dimethylformamide (DMF) •0.25 H2O (coded as QUF-001 MOF), in solvothermal conditions by using zinc nitrate as a source of metal ion and TPDCA as a ligand easy accessible from citric acid and cysteine. Single crystal X-ray diffraction analysis and microscopic examination revealed the two-dimensional character of the formed MOF. Upon treatment of QUF-001 with organic solvents (such as methanol, isopropanol, chloroform, dimethylformamide, tetrahydrofuran, hexane), interactions were observed and changes in fluorescence maxima as well as in the powder diffraction patterns were noticed, indicating the inclusion and intercalation of the solvents into the interlamellar space of the crystal structure of QUF-001. Furthermore, CO2 and CH4 molecule sorption properties for QUF-001 reached up to 1.6 mmol/g and 8.1 mmol/g, respectively, at 298 K and a pressure of 50 bars.
Collapse
|
9
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
10
|
Pelaquim FP, Barbosa Neto AM, Dalmolin IAL, Costa MCD. Gas Solubility Using Deep Eutectic Solvents: Review and Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00947] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fernanda Paludetto Pelaquim
- School of Chemical Engineering, University of Campinas—UNICAMP, 500 Albert Einstein Avenue, 13083-852, Campinas, São Paulo Brazil
| | - Antonio Marinho Barbosa Neto
- Petroleum Engineering Department, State University of Santa Catarina—UDESC, Lourival Cesário Pereira Avenue, 88336-275, Balneário Camboriú, Santa Catarina Brazil
| | - Irede Angela Lucini Dalmolin
- Academic Department of Engineering, Federal Technological University of Paraná (UTFPR), Linha Santa Bárbara, 85601-970, Francisco Beltrão, Paraná Brazil
| | - Mariana Conceição da Costa
- School of Chemical Engineering, University of Campinas—UNICAMP, 500 Albert Einstein Avenue, 13083-852, Campinas, São Paulo Brazil
| |
Collapse
|
11
|
Rozas S, Alomari N, Atilhan M, Aparicio S. Theoretical insights into the cineole-based deep eutectic solvents. J Chem Phys 2021; 154:184504. [PMID: 34241002 DOI: 10.1063/5.0048369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deep eutectic solvents based on cineole as hydrogen bond acceptors and organic acids (succinic, malic, and lactic) as hydrogen bond donors are studied using a theoretical approach. The nature, strength, and extension of hydrogen bonding are analyzed, thus quantifying this prevailing interaction and its role in the fluid properties. Density functional theory was used to study small molecular clusters, and the topological characterization of the intermolecular forces was carried out using atoms in a molecule theory. Classical molecular dynamics simulations were considered to study nanoscopic bulk liquid properties and their relationship with relevant macroscopic properties such as density or thermal expansion. The reported results provide the characterization of environmentally friendly deep eutectic solvents and show the suitability of cineole for developing these sustainable materials.
Collapse
Affiliation(s)
- Sara Rozas
- Department of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Noor Alomari
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Mert Atilhan
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | | |
Collapse
|
12
|
Haghbakhsh R, Keshtkar M, Shariati A, Raeissi S. Experimental investigation of carbon dioxide solubility in the deep eutectic solvent (1 ChCl + 3 triethylene glycol) and modeling by the CPA EoS. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Zhang Z, Liu X, Yao D, Ma Z, Zhao J, Zhang W, Cui P, Ma Y, Zhu Z, Wang Y. Molecular kinetic extraction mechanism analysis of 1-butanol from n-heptane-1-butanol by choline-based DESs as extractants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Effect of Hydrogen Bond Donors and Acceptors on CO2 Absorption by Deep Eutectic Solvents. Processes (Basel) 2020. [DOI: 10.3390/pr8121533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effects of a hydrogen bond acceptor and hydrogen bond donor on carbon dioxide absorption via natural deep eutectic solvents were studied in this work. Naturally occurring non-toxic deep eutectic solvent constituents were considered; choline chloride, b-alanine, and betaine were selected as hydrogen bond acceptors; lactic acid, malic acid, and fructose were selected as hydrogen bond donors. Experimental gas absorption data were collected via experimental methods that uses gravimetric principles. Carbon dioxide capture data for an isolated hydrogen bond donor and hydrogen bond acceptor, as well as natural deep eutectic solvents, were collected. In addition to experimental data, a theoretical study using Density Functional Theory was carried out to analyze the properties of these fluids from the nanoscopic viewpoint and their relationship with the macroscopic behavior of the system, and its ability for carbon dioxide absorption. The combined experimental and theoretical reported approach work leads to valuable discussions on what is the effect of each hydrogen bond donor or acceptor, as well as how they influence the strength and stability of the carbon dioxide absorption in deep eutectic solvents. Theoretical calculations explained the experimental findings, and combined results showed the superiority of the hydrogen bond acceptor role in the gas absorption process, with deep eutectic solvents. Specifically, the cases in which choline chloride was used as hydrogen bond acceptor showed the highest absorption performance. Furthermore, it was observed that when malic acid was used as a hydrogen bond donor, it led to low carbon dioxide solubility performance in comparison to other studied deep eutectic solvents. The cases in which lactic acid was used as a hydrogen bond donor showed great absorption performance. In light of this work, more targeted, specific, deep eutectic solvents can be designed for effective and alternative carbon dioxide capture and management.
Collapse
|
15
|
Choline chloride-based deep eutectic solvents as green extractant for the efficient extraction of 1-butanol or 2-butanol from azeotropic n-heptane + butanol mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Cui P, Liu X, Zhao F, Zhu Z, Wang L, Wang Y. Molecular Mechanism, Thermoeconomic, and Environmental Impact for Separation of Isopropanol and Water Using the Choline-Based DESs as Extractants. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peizhe Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xingyi Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fei Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhaoyou Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
17
|
Essehli R, Sabri S, El-Mellouhi F, Aïssa B, Ben Yahia H, Altamash T, Khraisheh M, Amhamed A, El Bali B. Single crystal structure, vibrational spectroscopy, gas sorption and antimicrobial properties of a new inorganic acidic diphosphates material (NH 4) 2Mg(H 2P 2O 7) 2•2H 2O. Sci Rep 2020; 10:8909. [PMID: 32483192 PMCID: PMC7264148 DOI: 10.1038/s41598-020-65718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 11/08/2022] Open
Abstract
We report on the successful synthesis of diammonium magnesium dihydrogendiphosphate (V) dihydrate compound (NH4)2Mg(H2P2O7)2•2H2O using a wet chemical route. Single crystal X-ray diffraction analysis and micro Raman spectroscopy are employed to characterize the compound. We demonstrate, using a multidisciplinary approach, that this compound is ideal for carbon dioxide (CO2) capture in addition to other anthropogenic gasses. We show here -from both an experimental as well as from a density functional theory (DFT) calculations routes- the potential for adopting this compound into domestic air-conditioning units (ACUs). From these experiments, the resistance to bacterial growth is also investigated, which is critical for the adoption of this compound in ACUs. Our compound exhibits a higher methane (CH4) sorptivity as compared to CO2 at 25 °C and 45 °C under pressures up to 50 bars. Furthermore, DFT electronic structure calculations are used to compute the main structural and electronic properties of the compound, taking into consideration the characteristics of the identified pores as a function of the progressive CO2 vs. CH4 loadings. Finally, the antibacterial assay reveals a strong antibacterial activity against the tested Gram-positive and Gram-negative bacteria, with a large zone of inhibition against the tested E. Coli, S. Aureus and K. Pneumonia.
Collapse
Affiliation(s)
- Rachid Essehli
- Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Souhir Sabri
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Fedwa El-Mellouhi
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Brahim Aïssa
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| | - Hamdi Ben Yahia
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Tausif Altamash
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Majeda Khraisheh
- Chemical Engineering Department, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdulkarem Amhamed
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| | | |
Collapse
|
18
|
Cao Y, Zhang X, Zeng S, Liu Y, Dong H, Deng C. Protic ionic
liquid‐based
deep eutectic solvents with multiple hydrogen bonding sites for efficient absorption of
NH
3
. AIChE J 2020. [DOI: 10.1002/aic.16253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yongkang Cao
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
- College of Chemical Engineering and EnvironmentChina University of Petroleum Beijing China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
- College of Chemical and EngineeringUniversity of Chinese Academy of Sciences Beijing China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yanrong Liu
- Energy Engineering, Division of Energy ScienceLuleå University of Technology Luleå Sweden
| | - Haifeng Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex SystemsInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Chun Deng
- College of Chemical Engineering and EnvironmentChina University of Petroleum Beijing China
| |
Collapse
|
19
|
Alkhatib II, Bahamon D, Llovell F, Abu-Zahra MR, Vega LF. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112183] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Atilhan M, Altamash T, Aparicio S. Quantum Chemistry Insight into the Interactions Between Deep Eutectic Solvents and SO 2. Molecules 2019; 24:molecules24162963. [PMID: 31443291 PMCID: PMC6720665 DOI: 10.3390/molecules24162963] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 01/08/2023] Open
Abstract
A systematic research work on the rational design of task specific Deep Eutectic Solvents (DES) has been carried out via density functional theory (DFT) in order to increase knowledge on the key interaction parameters related to efficient SO2 capture by DES at a molecular level. A total of 11 different DES structures, for which high SO2 affinity and solubility is expected, have been selected in this work. SO2 interactions in selected DES were investigated in detail through DFT simulations and this work has generated a valuable set of information about required factors at the molecular level to provide high SO2 solubility in DES, which is crucial for enhancing the current efficiency of the SO2 capture process and replacing the current state of the art with environmentally friendly solvents and eventually implementing these materials in the chemical industry. Results that were obtained from DFT calculations were used to deduce the details of the type and the intensity of the interaction between DES and SO2 molecules at various interaction sites as well as to quantify short-range interactions by using various methods such as quantum theory of atoms in a molecule (QTAIM), electrostatic potentials (ESP) and reduced density gradients (RDG). Systematic research on the molecular interaction characterization between DES structures and SO2 molecule increases our knowledge on the rational design of task-specific DES.
Collapse
Affiliation(s)
- Mert Atilhan
- Department of Chemical Engineering, Texas A&M University at Qatar, Doha 23874, Qatar.
- Gas and Fuels Research Center, Texas A&M University, College Station, TX 77843, USA.
| | - Tausif Altamash
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 23874, Qatar
| | | |
Collapse
|