1
|
Condes LC, Webb MT, Le TTB, Box WJ, Doherty CM, Gali A, Garrido L, Deng J, Matesanz-Niño L, Lozano AE, Alvarez C, Buongiorno Nardelli M, Striolo A, Hill AJ, Galizia M. Elucidating the Molecular Mechanisms by which Porous Polymer Networks Affect Structure, Aging Propensity, and Selectivity of Microporous Glassy Polymer Membranes using a Multiscale Approach. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53843-53854. [PMID: 39320115 DOI: 10.1021/acsami.4c11472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N2 pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP. Noteworthy, PPNs are 2 orders of magnitude cheaper than the porous aromatic frameworks previously used to control PTMSP aging. A variety of experimental and computational techniques, such as Positron Annihilation Lifetime Spectroscopy (PALS), free volume measurements, cross-polarization/magic angle spinning (CP/MAS) 13C NMR, transport measurements and molecular dynamics (MD) simulations were used to uncover the molecular mechanisms leading to enhanced aging resistance. We show that partial PTMSP chain adsorption into the PPN porosity reduces the PTMSP local segmental mobility, leading to improved aging resistance. Permeability coefficients were broken into their elementary sorption and diffusion contributions, to elucidate the mechanism by which the reduced PTMSP local segmental mobility affects selectivity in gas separation applications. Finally, we demonstrate that in these systems, where both chemical and physical interactions take place, transport coefficients must be corrected for thermodynamic nonidealities to avoid erroneous interpretation of the results.
Collapse
Affiliation(s)
- Lucas C Condes
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Matthew T Webb
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Tran T B Le
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - William J Box
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Cara M Doherty
- CSIRO Manufacturing, Research Way, 3168 Clayton, Australia
| | - Aditi Gali
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Leoncio Garrido
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Jing Deng
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Laura Matesanz-Niño
- University of Valladolid, UI CINQUIMA, Paseo Belén 5, E-47011 Valladolid, Spain
| | - Angel E Lozano
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- University of Valladolid, UI CINQUIMA, Paseo Belén 5, E-47011 Valladolid, Spain
- SMAP, UA-UVA, CSIC, Research Unit Associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
| | - Cristina Alvarez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA, CSIC, Research Unit Associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
| | - Marco Buongiorno Nardelli
- Department of Physics, University of North Texas, 1155 Union Circle, Denton 76203, Texas, United States
| | - Alberto Striolo
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| | - Anita J Hill
- CSIRO Manufacturing, Research Way, 3168 Clayton, Australia
| | - Michele Galizia
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States
| |
Collapse
|
2
|
Torres A, Soto C, Carmona FJ, Simorte MT, Sanz I, Muñoz R, Palacio L, Prádanos P, Hernández A, Tena A. Enhancing Permeability: Unraveling the Potential of Microporous Organic Polymers in Mixed Matrix Membranes. ACS APPLIED POLYMER MATERIALS 2024; 6:9088-9098. [PMID: 39144280 PMCID: PMC11320380 DOI: 10.1021/acsapm.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Mixed matrix membranes (MMMs) were formed by using seven polymeric matrices with a wide range of permeabilities. All of the polymeric matrices have been polyimides, namely: P84, Pi-DAPOH, Pi-DAROH, Matrimid, Pi-HABAc, PI-DAM, and PIM-1 in the order of increasing O2 permeability. A fixed (10%) concentration of a microporous organic polymer (TFAP-Trp), formed by the combination of trifluoroacetophenone and triptycene, was added as a porous filler. The material properties as well as their separation performances for multiple pure gases, specifically the permeabilities of He, N2, O2, CH4, and CO2, were measured. The correlation between the relative increase in permeability in MMMs and that of the matrix polymeric membrane has been quantitatively analyzed. This study proves that the increased permeability of MMMs is largely linked to the contribution of the high permeability of the filler. The addition of the TFAP-Trp porous filler proves to be especially beneficial for matrices with low to moderate permeabilities, significantly enhancing the matrix permeability overall. The fitted relationship is approximately linear in accordance with the existing models to predict permeability in dual-phase systems for low proportions of the dispersed phase. An extrapolation allows the evaluation of the permeability of the pure microporous organic polymer, which agrees with the previous values described by the group for different filler contents and in other polymeric matrices. In all cases, the selectivity remains approximately constant while the permeability increases. The addition of TFAP-Trp to all the polymeric matrices led to a moderate improvement of the MMM separation performances, mainly centered on their permeabilities.
Collapse
Affiliation(s)
- Alba Torres
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - Cenit Soto
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - Francisco Javier Carmona
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - María Teresa Simorte
- FCC
Medio Ambiente, Avenida Camino de Santiago 40, Edificio 2 - Planta 2, Madrid 2850, Spain
| | - Inmaculada Sanz
- FCC
Medio Ambiente, Avenida Camino de Santiago 40, Edificio 2 - Planta 2, Madrid 2850, Spain
| | - Raúl Muñoz
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - Laura Palacio
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - Pedro Prádanos
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - Antonio Hernández
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| | - Alberto Tena
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, Universidad de Valladolid, Facultad de Ciencias, Paseo Belén 7, Valladolid E-47011, Spain
- Institute
of Sustainable Processes (ISP), Dr. Mergelina S/n, Valladolid 47011, Spain
| |
Collapse
|
3
|
Esteban N, Claros M, Álvarez C, Lozano ÁE, Bartolomé C, Martínez-Ilarduya JM, Miguel JA. Palladium Catalysts Supported in Microporous Phosphine Polymer Networks. Polymers (Basel) 2023; 15:4143. [PMID: 37896387 PMCID: PMC10611190 DOI: 10.3390/polym15204143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
A new set of microporous organic polymers (POPs) containing diphosphine derivatives synthesized by knitting via Friedel-Crafts has been attained. These amorphous three-dimensional materials have been prepared by utilizing diphosphines, 1,3,5-triphenylbenzene, and biphenyl as nucleophile aromatic groups, dimethoxymethane as the electrophilic linker, and FeCl3 as a promoting catalyst. These polymer networks display moderate thermal stability and high microporosity, boasting BET surface areas above 760 m2/g. They are capable of coordinating with palladium acetate, using the phosphine derivative as an anchoring center, and have proven to be highly efficient catalysts in Suzuki-Miyaura coupling reactions involving bromo- and chloroarenes under environmentally friendly (using water and ethanol as solvents) and aerobic conditions. These supported catalysts have achieved excellent turnover numbers (TON) and turnover frequencies (TOF), while maintaining good recyclability without significant loss of activity or Pd leaching after five consecutive reaction cycles.
Collapse
Affiliation(s)
- Noelia Esteban
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
| | - Miguel Claros
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
| | - Cristina Álvarez
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC, School of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ángel E. Lozano
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC, School of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Camino Bartolomé
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
| | - Jesús M. Martínez-Ilarduya
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
| | - Jesús A. Miguel
- IU CINQUIMA, School of Sciences, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (N.E.); (M.C.); (C.Á.); (Á.E.L.); (J.M.M.-I.)
| |
Collapse
|
4
|
Carta M, Antonangelo AR, Jansen JC, Longo M. The Difference in Performance and Compatibility between Crystalline and Amorphous Fillers in Mixed Matrix Membranes for Gas Separation (MMMs). Polymers (Basel) 2023; 15:2951. [PMID: 37447596 DOI: 10.3390/polym15132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the performance of these separation systems over a relatively short time. A common approach to address this issue is the development of mixed matrix membranes (MMMs). These hybrid systems typically utilise either crystalline or amorphous additives, so-called fillers, which are incorporated into polymeric membranes at different loadings, with the aim to improve and stabilise the final gas separation performance. After a general introduction to the most relevant models to describe the transport properties in MMMs, this review intends to investigate and discuss the main advantages and disadvantages derived from the inclusion of fillers of different morphologies. Particular emphasis will be given to the study of the compatibility at the interface between the filler and the matrix created by the two different classes of additives, the inorganic and crystalline fillers vs. their organic and amorphous counterparts. It will conclude with a brief summary of the main findings.
Collapse
Affiliation(s)
- Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Johannes Carolus Jansen
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|
5
|
Matesanz-Niño L, Cuellas D, Aguilar-Lugo C, Palacio L, González-Ortega A, de la Campa JG, Álvarez C, Lozano ÁE. Isomeric Aromatic Polyimides Containing Biphenyl Moieties for Gas Separation Applications. Polymers (Basel) 2023; 15:polym15061333. [PMID: 36987115 PMCID: PMC10056342 DOI: 10.3390/polym15061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
An optimized synthesis of the monomer 2,2′3,3′-biphenyltetracarboxylic dianhydride, iBPDA, was performed to obtain high molecular weight polymers. This monomer has a contorted structure that produces a non-linear shape, hindering the packing of the polymer chain. Aromatic polyimides of high molecular weight were obtained by reaction with the commercial diamine 2,2-bis(4-aminophenyl) hexafluoropropane, 6FpDA, which is a very common monomer in gas separation applications. This diamine has hexafluoroisopropylidine groups which introduce rigidity in the chains, hindering efficient packing. The thermal treatment of the polymers processed as dense membranes had two targets: on the one hand, to achieve the complete elimination of the solvent used, which could remain occluded in the polymeric matrix, and on the other hand to ensure the complete cycloimidization of the polymer. A thermal treatment exceeding the glass transition temperature was performed to ensure the maximum degree of imidization at 350 °C. The good mechanical properties of these materials allow for their use in high-pressure gas purification applications. Moreover, models of the polymers exhibited an Arrhenius-like behavior characteristic of secondary relaxations, normally associated with local motions of the molecular chain. The gas productivity of these membranes was high.
Collapse
Affiliation(s)
- Laura Matesanz-Niño
- Department of Macromolecular Chemistry, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain (C.Á.)
- SMAP, UA-UVA_CSIC, Research Unit associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - David Cuellas
- Department of Macromolecular Chemistry, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain (C.Á.)
| | - Carla Aguilar-Lugo
- Faculty of Chemistry, National Autonomous University of Mexico, Cd. University, Coyoacán, México 04510, Mexico
| | - Laura Palacio
- SMAP, UA-UVA_CSIC, Research Unit associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
| | - Alfonso González-Ortega
- Department of Organic Chemistry, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - José G. de la Campa
- Department of Macromolecular Chemistry, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain (C.Á.)
| | - Cristina Álvarez
- Department of Macromolecular Chemistry, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain (C.Á.)
- SMAP, UA-UVA_CSIC, Research Unit associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
| | - Ángel E. Lozano
- Department of Macromolecular Chemistry, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain (C.Á.)
- SMAP, UA-UVA_CSIC, Research Unit associated to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 11, E-47011 Valladolid, Spain
- UI CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
- Correspondence:
| |
Collapse
|
6
|
Polymer materials derived from the SEAr reaction for gas separation applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Soto C, Comesaña-Gandara B, Marcos Á, Cuadrado P, Palacio L, Lozano ÁE, Álvarez C, Prádanos P, Hernandez A. Thermally Rearranged Mixed Matrix Membranes from Copoly(o-hydroxyamide)s and Copoly(o-hydroxyamide-amide)s with a Porous Polymer Network as a Filler-A Comparison of Their Gas Separation Performances. MEMBRANES 2022; 12:998. [PMID: 36295757 PMCID: PMC9609112 DOI: 10.3390/membranes12100998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Copoly(o-hydroxyamide)s (HPA) and copoly(o-hydroxyamide-amide)s (PAA) have been synthesized to be used as continuous phases in mixed matrix membranes (MMMs). These polymeric matrices were blended with different loads (15 and 30 wt.%) of a relatively highly microporous porous polymer network (PPN). SEM images of the manufactured MMMs exhibited good compatibility between the two phases for all the membranes studied, and their mechanical properties have been shown to be good enough even after thermal treatment. The WAX results show that the addition of PPN as a filler up to 30% does not substantially change the intersegmental distance and the polymer packing. It seems that, for all the membranes studied, the free volume that determines gas transport is in the high end of the possible range. This means that gas flow occurs mainly between the microvoids in the polymer matrix around the filler. In general, both HPA- and PAA-based MMMs exhibited a notable improvement in gas permeability, due to the presence of PPN, for all gases tested, with an almost constant selectivity. In summary, although the thermal stability of the PAA is limited by the thermal stability of the polyamide side chain, their mechanical properties were better. The permeability was higher for the PAA membranes before their thermal rearrangement, and these values increased after the addition of moderate amounts of PPN.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | | | - Ángel Marcos
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Purificación Cuadrado
- Department of Organic Chemistry, School of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
| | - Cristina Álvarez
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
8
|
Abstract
Biogas and biohydrogen, due to their renewable nature and zero carbon footprint, are considered two of the gaseous biofuels that will replace conventional fossil fuels. Biogas from anaerobic digestion must be purified and converted into high-quality biomethane prior to use as a vehicle fuel or injection into natural gas networks. Likewise, the enrichment of biohydrogen from dark fermentation requires the removal of CO2, which is the main pollutant of this new gaseous biofuel. Currently, the removal of CO2 from both biogas and biohydrogen is carried out by means of physical/chemical technologies, which exhibit high operating costs and corrosion problems. Biological technologies for CO2 removal from biogas, such as photosynthetic enrichment and hydrogenotrophic enrichment, are still in an experimental development phase. In this context, membrane separation has emerged as the only physical/chemical technology with the potential to improve the performance of CO2 separation from both biogas and biohydrogen, and to reduce investment and operating costs, as a result of the recent advances in the field of nanotechnology and materials science. This review will focus on the fundamentals, potential and limitations of CO2 and H2 membrane separation technologies. The latest advances on membrane materials for biogas and biohydrogen purification will be systematically reviewed.
Collapse
|
9
|
Free Volume and Permeability of Mixed Matrix Membranes Made from a Terbutil-M-terphenyl Polyamide and a Porous Polymer Network. Polymers (Basel) 2022; 14:polym14153176. [PMID: 35956689 PMCID: PMC9371232 DOI: 10.3390/polym14153176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
A set of thermally rearranged mixed matrix membranes (TR-MMMs) was manufactured and tested for gas separation. These membranes were obtained through the thermal treatment of a precursor MMM with a microporous polymer network and an o-hydroxypolyamide,(HPA) created through a reaction of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (APAF) and 5′-terbutil-m-terfenilo-3,3″-dicarboxylic acid dichloride (tBTmCl). This HPA was blended with different percentages of a porous polymer network (PPN) filler, which produced gas separation MMMs with enhanced gas permeability but with decreased selectivity. The thermal treatment of these MMMs gave membranes with excellent gas separation properties that did not show the selectivity decreasing trend. It was observed that the use of the PPN load brought about a small decrease in the initial mass losses, which were lower for increasing PPN loads. Regarding the glass transition temperature, it was observed that the use of the filler translated to a slightly lower Tg value. When these MMMs and TR-MMMs were compared with the analogous materials created from the isomeric 5′-terbutil-m-terfenilo-4,4″-dicarboxylic acid dichloride (tBTpCl), the permeability was lower for that of tBTmCl, compared with the one from tBTpCl, although selectivity was quite similar. This fact could be attributed to a lower rigidity as roughly confirmed by the segmental length of the polymer chain as studied by WAXS. A model for FFV calculation was proposed and its predictions compared with those evaluated from density measurements assuming a matrix-filler interaction or ideal independence. It turns out that permeability as a function of FFV for TR-MMMs follows an interaction trend, while those not thermally treated follow the non-interaction trend until relatively high PPN loads were reached.
Collapse
|
10
|
Rico-Martínez S, Álvarez C, Hernández A, Miguel JA, Lozano ÁE. Mixed Matrix Membranes Loaded with a Porous Organic Polymer Having Bipyridine Moieties. MEMBRANES 2022; 12:membranes12060547. [PMID: 35736254 PMCID: PMC9228454 DOI: 10.3390/membranes12060547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
Mixed matrix membranes (MMMs), derived from three aromatic polyimides (PIs), and an affordable porous organic polymer (POP) having basic bipyridine moieties were prepared. Matrimid and two fluorinated polyimides, which were derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride and 2,2′-bis(4-aminophenyl)hexafluoropropane (6F6F) or 2,4,6-trimethyl-m-phenylenediamine (6FTMPD), were employed as polymer matrixes. The used POP was a highly microporous material (surface area of 805 m2 g−1) with excellent thermal and chemical stability. The MMMs showed good compatibility between the PIs and POP, high thermal stabilities and glass transition temperatures superior to those of the neat PI membranes, and good mechanical properties. The addition of POP to the matrix led to an increase in the gas diffusivity and, thus, in permeability, which was associated with an increase in the fractional free volume of MMMs. The increase in permeability was higher for the less permeable matrix. For example, at 30 wt.% of POP, the permeability to CO2 and CH4 of the MMMs increased by 4- and 7-fold for Matrimid and 3- and 4-fold for 6FTMPD. The highest CH4 permeability led to a decrease in CO2/CH4 selectivity. The CO2/N2 separation performance was interesting, as the selectivity remained practically constant. Finally, the POP showed no molecular sieving effect towards the C2H4/C2H6 and C3H6/C3H8 gas pairs, but the permeability increased by about 4-fold and the selectivity was close to that of the matrix. In addition, because the POP can form metal ion bipyridine complexes, modified POP-based MMMs could be employed for olefin/paraffin separations.
Collapse
Affiliation(s)
- Sandra Rico-Martínez
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
| | - Cristina Álvarez
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
- Correspondence: (C.Á.); (J.A.M.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| | - Jesús A. Miguel
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
- Correspondence: (C.Á.); (J.A.M.)
| | - Ángel E. Lozano
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain; (S.R.-M.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- Surfaces and Porous Materials (SMAP, UA-UVA_CSIC), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| |
Collapse
|
11
|
Soto C, Torres-Cuevas ES, Palacio L, Prádanos P, Freeman BD, Lozano ÁE, Hernández A, Comesaña-Gándara B. Gas Permeability, Fractional Free Volume and Molecular Kinetic Diameters: The Effect of Thermal Rearrangement on ortho-hydroxy Polyamide Membranes Loaded with a Porous Polymer Network. MEMBRANES 2022; 12:200. [PMID: 35207122 PMCID: PMC8879291 DOI: 10.3390/membranes12020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Mixed-matrix membranes (MMMs) consisting of an ortho-hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H2, N2, O2, CH4 and CO2 gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume. Thermal rearrangement entails an increase in the FFV. Both before and after thermal rearrangement, the free volume increases with the PPN content very similarly for both polymeric matrices. It is shown that there is a portion of free volume that is inaccessible to permeation (occluded volume), probably due to it being trapped within the filler. In fact, permeability and selectivity change below what could be expected according to densities, when the fraction of occluded volume increases. A higher filler load increases the percentage of inaccessible or trapped free volume, probably due to the increasing agglomeration of the filler. On the other hand, the phenomenon is slightly affected by thermal rearrangement. The fraction of trapped free volume seems to be lower for membranes in which the tBTpCl-APAF is used as a matrix than for those with a 6FCl-APAF matrix, possibly because tBTpCl-APAF could approach the PPN better. The application of an effective medium theory for permeability allowed us to extrapolate for a 100% filler, giving the same value for both thermally rearranged and non-rearranged MMMs. The pure filler could also be extrapolated by assuming the same tendency as in the Robeson's plots for MMMs with low filler content.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | - Edwin S. Torres-Cuevas
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, 200 E Dean Keeton St., Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, 200 E Dean Keeton St., Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Department of Macromolecular Chemistry, Juan de la Cierva 3, E-28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), E-47011 Valladolid, Spain
| | | |
Collapse
|
12
|
Soto C, Torres-Cuevas ES, González-Ortega A, Palacio L, Prádanos P, Freeman BD, Lozano ÁE, Hernandez A. Hydrogen Recovery by Mixed Matrix Membranes Made from 6FCl-APAF HPA with Different Contents of a Porous Polymer Network and Their Thermal Rearrangement. Polymers (Basel) 2021; 13:4343. [PMID: 34960894 PMCID: PMC8703379 DOI: 10.3390/polym13244343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
Mixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA) matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxypolyamide having two hexafluoropropyilidene moieties, 6FCl-APAF, while the PPN was prepared by reacting triptycene (TRP) and trifluoroacetophenone (TFAP) in a superacid solution. The most probable size of the PPN particles was 75 nm with quite large distributions. The resulting membranes were analyzed by SEM and AFM. Up to 30% PPN loads, both SEM and AFM images confirmed quite planar surfaces, at low scale, with limited roughness. Membranes with high hydrogen permeability and good selectivity for the gas pairs H2/CH4 and H2/N2 were obtained. For H2/CO2, selectivity almost vanished after thermal rearrangement. In all cases, their hydrogen permeability increased with increasing loads of PPN until around 30% PPN with ulterior fairly abrupt decreasing of permeability for all gases studied. Thermal rearrangement of the MMMs resulted in higher permeabilities but lower selectivities. For all the membranes and gas pairs studied, the balance of permeability vs. selectivity surpassed the 1991 Robeson's upper bound, and approached or even exceeded the 2008 line, for MMMs having 30% PPN loads. In all cases, the HPA-MMMs before thermal rearrangement provided good selectivity versus permeability compromise, similar to their thermally rearranged counterparts but in the zone of high selectivity. For H2/CH4, H2/N2, these nonthermally rearranged MMMs approach the 2008 Robeson's upper bound while H2/CO2 gives selective transport favoring H2 on the 1991 Robeson's bound. Thus, attending to the energy cost of thermal rearrangement, it could be avoided in some cases especially when high selectivity is the target rather than high permeability.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, E-47011 Valladolid, Spain
| | - Edwin S. Torres-Cuevas
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, 200 E Dean Keeton St., Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Alfonso González-Ortega
- Department of Organic Chemistry, School of Sciences, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain;
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, E-47011 Valladolid, Spain
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, E-47011 Valladolid, Spain
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, 200 E Dean Keeton St., Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.)
- Departament of Macromolecular Chemistry, Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - Antonio Hernandez
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain; (C.S.); (L.P.); (P.P.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, E-47011 Valladolid, Spain
| |
Collapse
|
13
|
Li M, Zheng Z, Zhang Z, Li N, Liu S, Chi Z, Xu J, Zhang Y. "All Polyimide" Mixed Matrix Membranes for High Performance Gas Separation. Polymers (Basel) 2021; 13:1329. [PMID: 33921599 PMCID: PMC8073420 DOI: 10.3390/polym13081329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022] Open
Abstract
To improve the interfacial compatibility of mixed matrix membranes (MMMs) for gas separation, microporous polyimide particle (AP) was designed, synthesized, and introduced into intrinsic microporous polyimide matrix (6FDA-Durene) to form "all polyimide" MMMs. The AP fillers showed the feature of thermal stability, similar density with polyimide matrix, high porosity, high fractional free volume, large microporous dimension, and interpenetrating network architecture. As expected, the excellent interfacial compatibility between 6FDA-Durene and AP without obvious agglomeration even at a high AP loading of 10 wt.% was observed. As a result, the CO2 permeability coefficient of MMM with AP loading as low as 5 wt.% reaches up to 1291.13 Barrer, which is 2.58 times that of the pristine 6FDA-Durene membrane without the significant sacrificing of ideal selectivity of CO2/CH4. The improvement of permeability properties is much better than that of the previously reported MMMs, where high filler content is required to achieve a high permeability increase but usually leads to significant agglomeration or phase separation of fillers. It is believed that the excellent interfacial compatibility between the PI fillers and the PI matrix induce the effective utilization of porosity and free volume of AP fillers during gas transport. Thus, a higher diffusion coefficient of MMMs has been observed than that of the pristine PI membrane. Furthermore, the rigid polyimide fillers also result in the excellent anti-plasticization ability for CO2. The MMMs with a 10 wt.% AP loading shows a CO2 plasticization pressure of 300 psi.
Collapse
Affiliation(s)
- Maijun Li
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Zhibo Zheng
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Zhiguang Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (M.L.); (S.L.); (Z.C.); (J.X.)
| |
Collapse
|
14
|
Soto C, Torres-Cuevas ES, González-Ortega A, Palacio L, Lozano ÁE, Freeman BD, Prádanos P, Hernández A. Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers (Basel) 2021; 13:polym13060931. [PMID: 33803520 PMCID: PMC8003052 DOI: 10.3390/polym13060931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
A hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-hexafluoropropane (APAF) diamine and 5′-terbutyl-m-terphenyl-4,4′′-dicarboxylic acid chloride (tBTpCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4′-(hexafluoroisopropylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric matrixes in mixed matrix membranes (MMMs) loaded with 20% (w/w) of two porous polymer networks (triptycene-isatin, PPN-1, and triptycene-trifluoroacetophenone, PPN-2). These MMMs, and also the thermally rearranged membranes (TR-MMMs) that underwent a thermal treatment process to convert the o-hydroxypolyamide moieties to polybenzoxazole ones, were characterized, and their gas separation properties evaluated for H2, N2, O2, CH4, and CO2. Both TR process and the addition of PPN increased permeability with minor decreases in selectivity for all gases tested. Excellent results were obtained, in terms of the permeability versus selectivity compromise, for H2/CH4 and H2/N2 separations with membranes approaching the 2008 Robeson’s trade-off line. The best gas separation properties were obtained when PPN-2 was used. Finally, gas permeation was characterized in terms of chain intersegmental distance and fraction of free volume of the membrane along with the kinetic diameters of the permeated gases. The intersegmental distance increased after TR and/or the addition of PPN-2. Permeability followed an exponential dependence with free volume and a quadratic function of the kinetic diameter of the gas.
Collapse
Affiliation(s)
- Cenit Soto
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Edwin S. Torres-Cuevas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Alfonso González-Ortega
- Department of Organic Chemistry, School of Sciences, Faculty of Sceince, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain;
| | - Laura Palacio
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ángel E. Lozano
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute for Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- IU CINQUIMA, University of Valladolid, Paseo Belén 5, 47011 Valladolid, Spain
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (E.S.T.-C.); (B.D.F.)
| | - Pedro Prádanos
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: (P.P.); (A.H.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Faculty of Science, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain; (C.S.); (L.P.); (Á.E.L.)
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: (P.P.); (A.H.)
| |
Collapse
|
15
|
Esteban N, Ferrer ML, Ania CO, de la Campa JG, Lozano ÁE, Álvarez C, Miguel JA. Porous Organic Polymers Containing Active Metal Centers for Suzuki-Miyaura Heterocoupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56974-56986. [PMID: 33305572 DOI: 10.1021/acsami.0c16184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new generation of confined palladium(II) catalysts covalently attached inside of porous organic polymers (POPs) has been attained. The synthetic approach employed was straightforward, and there was no prerequisite for making any modification of the precursor polymer. First, POP-based catalytic supports were obtained by reacting one symmetric trifunctional aromatic monomer (1,3,5-triphenylbenzene) with two ketones having electron-withdrawing groups (4,5-diazafluoren-9-one, DAFO, and isatin) in superacidic media. The homopolymers and copolymers were made using stoichiometric ratios between the functional groups, and they were obtained with quantitative yields after the optimization of reaction conditions. Moreover, the number of chelating groups (bipyridine moieties) available to bind Pd(II) ions to the catalyst supports was modified using different DAFO/isatin ratios. The resulting amorphous polymers and copolymers showed high thermal stability, above 500 °C, and moderate-high specific surface areas (from 760 to 935 m2 g-1), with high microporosity contribution (from 64 to 77%). Next, POP-supported Pd(II) catalysts were obtained by simple immersion of the catalyst supports in a palladium(II) acetate solution, observing that the metal content was similar to that theoretically expected according to the amount of bipyridine groups present. The catalytic activity of these heterogeneous catalysts was explored for the synthesis of biphenyl and terphenyl compounds, via the Suzuki-Miyaura cross-coupling reaction using a green solvent (ethanol/water), low palladium loads, and aerobic conditions. The findings showed excellent catalytic activity with quantitative product yields. Additionally, the recyclability of the catalysts, by simply washing it with ethanol, was excellent, with a sp2-sp2 coupling yield higher than 95% after five cycles of use. Finally, the feasibility of these catalysts to be employed in tangible organic reactions was assessed. Thus, the synthesis of a bulky compound, 4,4'-dimethoxy-5'-tert-butyl-m-terphenylene, which is a precursor of a thermal rearrangement monomer, was scaled-up to 2 g, with high conversion and 96% yield of the pure product.
Collapse
Affiliation(s)
- Noelia Esteban
- IU CINQUIMA, Universidad de Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| | - María L Ferrer
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Conchi O Ania
- CEMHTI CNRS (UPR 3079), University of Orléans, 45071 Orléans, France
| | - José G de la Campa
- Department of Applied Macromolecular Chemistry, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ángel E Lozano
- Department of Applied Macromolecular Chemistry, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC, Universidad de Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Cristina Álvarez
- Department of Applied Macromolecular Chemistry, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- SMAP, UA-UVA_CSIC, Associated Research Unit to CSIC, Universidad de Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Jesús A Miguel
- IU CINQUIMA, Universidad de Valladolid, Paseo Belén 5, E-47011 Valladolid, Spain
| |
Collapse
|
16
|
Enhanced Gas Separation Performance by Embedding Submicron Poly(ethylene glycol) Capsules into Polyetherimide Membrane. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2521-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Li X, Feng J, Zhang S, Tang Y, Hu X, Liu X, Liu X. Epoxy/benzoxazinyl
POSS
nanocomposite resin with low dielectric constant and excellent thermal stability. J Appl Polym Sci 2020. [DOI: 10.1002/app.49887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaodan Li
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University Chongqing China
| | - Jiacheng Feng
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University Chongqing China
| | - Shuai Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Ying Tang
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University Chongqing China
| | - Xinyu Hu
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University Chongqing China
| | - Xiaoping Liu
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University Chongqing China
| | - Xiaoqing Liu
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University Chongqing China
| |
Collapse
|