1
|
Ferreira AM, Sales I, Santos SAO, Santos T, Nogueira F, Mattedi S, Pinho SP, Coutinho JA, Freire MG. Enhanced Antimalarial Activity of Extracts of Artemisia annua L. Achieved with Aqueous Solutions of Salicylate Salts and Ionic Liquids. CHEM & BIO ENGINEERING 2024; 1:44-52. [PMID: 38434799 PMCID: PMC10906083 DOI: 10.1021/cbe.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 12/06/2023] [Indexed: 03/05/2024]
Abstract
Artemisinin, a drug used to treat malaria, can be chemically synthesized or extracted from Artemisia annua L. However, the extraction method for artemisinin from biomass needs to be more sustainable while maintaining or enhancing its bioactivity. This work investigates the use of aqueous solutions of salts and ionic liquids with hydrotropic properties as alternative solvents for artemisinin extraction from Artemisia annua L. Among the investigated solvents, aqueous solutions of cholinium salicylate and sodium salicylate were found to be the most promising. To optimize the extraction process, a response surface method was further applied, in which the extraction time, hydrotrope concentration, and temperature were optimized. The optimized conditions resulted in extraction yields of up to 6.50 and 6.44 mg·g-1, obtained with aqueous solutions of sodium salicylate and cholinium salicylate, respectively. The extracts obtained were tested for their antimalarial activity, showing a higher efficacy against the Plasmodium falciparum strain compared with pure (synthetic) artemisinin or extracts obtained with conventional organic solvents. Characterization of the extracts revealed the presence of artemisinin together with other compounds, such as artemitin, chrysosplenol D, arteannuin B, and arteannuin J. These compounds act synergistically with artemisinin and enhance the antimalarial activity of the obtained extracts. Given the growing concern about artemisinin resistance, the results here obtained pave the way for the development of sustainable and biobased antimalarial drugs.
Collapse
Affiliation(s)
- Ana M. Ferreira
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabela Sales
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Escola
Politécnica, Universidade Federal
da Bahia, Bahia 40210-630, Brazil
| | - Sónia A. O. Santos
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Santos
- Global
Health and Tropical Medicine, GHTM, Associate Laboratory in Translation
and Innovation towards Global Health, LA-REAL, Instituto de Higiene
e Medicina Tropical, IHMT, Universidade
Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Global
Health and Tropical Medicine, GHTM, Associate Laboratory in Translation
and Innovation towards Global Health, LA-REAL, Instituto de Higiene
e Medicina Tropical, IHMT, Universidade
Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE,
MolSyn, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Silvana Mattedi
- Escola
Politécnica, Universidade Federal
da Bahia, Bahia 40210-630, Brazil
| | - Simão P. Pinho
- Mountain
Research Center − CIMO, Polytechnic
Institute of Bragança, Bragança 5300-253, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança 5300-253, Portugal
| | - João A.
P. Coutinho
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Wan Y, Zeng Q, Shi P, Yoon YJ, Tay CY, Lee JM. Machine learning-assisted optimization of TBBPA-bis-(2,3-dibromopropyl ether) extraction process from ABS polymer. CHEMOSPHERE 2022; 287:132128. [PMID: 34509015 DOI: 10.1016/j.chemosphere.2021.132128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The increasing amount of e-waste plastics needs to be disposed of properly, and removing the brominated flame retardants contained in them can effectively reduce their negative impact on the environment. In the present work, TBBPA-bis-(2,3-dibromopropyl ether) (TBBPA-DBP), a novel brominated flame retardant, was extracted by ultrasonic-assisted solvothermal extraction process. Response Surface Methodology (RSM) achieved by machine learning (support vector regression, SVR) was employed to estimate the optimum extraction conditions (extraction time, extraction temperature, liquid to solid ratio) in methanol or ethanol solvent. The predicted optimum conditions of TBBPA-DBP were 96 min, 131 mL g-1, 65 °C, in MeOH, and 120 min, 152 mL g-1, 67 °C in EtOH. And the validity of predicted conditions was verified.
Collapse
Affiliation(s)
- Yan Wan
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Qiang Zeng
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Pujiang Shi
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yong-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chor Yong Tay
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jong-Min Lee
- Energy Research Institute, Nangyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
3
|
Ning P, Meng Q, Dong P, Duan J, Xu M, Lin Y, Zhang Y. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 103:52-60. [PMID: 31865035 DOI: 10.1016/j.wasman.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Herein, a novel process involving ultrasound-assisted leaching developed for recovering Ni, Li, Co, and Mn from spent lithium-ion batteries (LIBs) is reported. Carbonate coprecipitation was utilized to regenerate LiNi0.6Co0.2Mn0.2O2 from the leachate. Spent cathode materials were leached in DL-malic acid and hydrogen peroxide (H2O2). The leaching efficiency was investigated by determining the contents of metal elements such as Li, Ni, Co, and Mn in the leachate using atomic absorption spectrometry (AAS). The filter residue and the spent cathode materials were examined using Fourier transform infrared (FTIR) and scanning electronic microscopy. The leaching efficiencies were 97.8% for Ni, 97.6% for Co, 97.3% for Mn, and 98% for Li under the optimized conditions (90 W ultrasound power, 1.0 mol/L DL-malic acid, 5 g/L pulp density, 80 °C, 4 vol% H2O2, and 30 min). The leaching kinetics of the cathode in DL-malic acid are in accordance with the log rate law model. The electrochemical analysis indicates that the LiNi0.6Co0.2Mn0.2O2 regenerated at pH 8.5 has good electrochemical performance. The specific capacity of the first discharge at 0.1 C is 168.32 mA h g-1 at 1 C after 50 cycles with a capacity retention of 85.0%. A novel closed-loop process to recycle spent cathode materials was developed, and it has potential value for practical application and for contributing to resource recycling and environmental protection.
Collapse
Affiliation(s)
- Peichao Ning
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Qi Meng
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianguo Duan
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Mingli Xu
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Lin
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China; Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China; Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
4
|
Sun F, Xu B, Dai S, Zhang Y, Lin Z, Qiao Y. A Novel Framework to Aid the Development of Design Space across Multi-Unit Operation Pharmaceutical Processes-A Case Study of Panax Notoginseng Saponins Immediate Release Tablet. Pharmaceutics 2019; 11:pharmaceutics11090474. [PMID: 31540243 PMCID: PMC6781312 DOI: 10.3390/pharmaceutics11090474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The fundamental principle of Quality by Design (QbD) is that the product quality should be designed into the process through an upstream approach, rather than be tested in the downstream. The keystone of QbD is process modeling, and thus, to develop a process control strategy based on the development of design space. Multivariate statistical analysis is a very useful tool to support the implementation of QbD in pharmaceutical process development and manufacturing. Nowadays, pharmaceutical process modeling is mainly focused on one-unit operations and system modeling for the development of design space across multi-unit operations is still limited. In this study, a general procedure that gives a holistic view for understanding and controlling the process settings for the entire manufacturing process was investigated. The proposed framework was tested on the Panax Notoginseng Saponins immediate release tablet (PNS IRT) production process. The critical variables and the critical units acting on the process were identified according to the importance of explaining the variability in the multi-block partial least squares path model. This improved understanding of the process by illustrating how the properties of the raw materials, the process parameters in the wet granulation and the compaction and the intermediate properties affect the tablet properties. Furthermore, the design space was developed to compensate for the variability source from the upstream. The results demonstrated that the proposed framework was an important tool to gain understanding and control the multi-unit operation process.
Collapse
Affiliation(s)
- Fei Sun
- Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Bing Xu
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing 100029, China.
- Beijing Key Laboratory of Traditional Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China.
| | - Shengyun Dai
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing 100029, China.
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Yi Zhang
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhaozhou Lin
- Beijing Institute of Clinical Pharmacy, Beijing 100035, China.
| | - Yanjiang Qiao
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing 100029, China.
- Beijing Key Laboratory of Traditional Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China.
| |
Collapse
|