1
|
Da Conceicao M, Nemetz L, Rivero J, Hornbostel K, Lipscomb G. Gas Separation Membrane Module Modeling: A Comprehensive Review. MEMBRANES 2023; 13:639. [PMID: 37505005 PMCID: PMC10384872 DOI: 10.3390/membranes13070639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Membrane gas separation processes have been developed for diverse gas separation applications that include nitrogen production from air and CO2 capture from point sources. Membrane process design requires the development of stable and robust mathematical models that can accurately quantify the performance of the membrane modules used in the process. The literature related to modeling membrane gas separation modules and model use in membrane gas separation process simulators is reviewed in this paper. A membrane-module-modeling checklist is proposed to guide modeling efforts for the research and development of new gas separation membranes.
Collapse
Affiliation(s)
- Marcos Da Conceicao
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Leo Nemetz
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Joanna Rivero
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Katherine Hornbostel
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Glenn Lipscomb
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
2
|
Chen TY, Deng X, Lin LC, Ho WW. 13C NMR study of amino acid salts in facilitated transport membranes for post-combustion carbon capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Two-stage membrane-based process utilizing highly CO2-selective membranes for cost and energy efficient carbon capture from coal flue gas: A process simulation study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Li Q, Wu H, Wang Z, Wang J. Analysis and optimal design of membrane processes for flue gas CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Rao S, Han Y, Ho WSW. Recent advances in polymeric membranes for carbon dioxide capture from syngas. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shraavya Rao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Lee YY, Wickramasinghe NP, Dikki R, Jan DL, Gurkan B. Facilitated transport membrane with functionalized ionic liquid carriers for CO 2/N 2, CO 2/O 2, and CO 2/air separations. NANOSCALE 2022; 14:12638-12650. [PMID: 36040354 DOI: 10.1039/d2nr03214g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CO2 separations from cabin air and the atmospheric air are challenged by the very low partial pressures of CO2. In this study, a facilitated transport membrane (FTM) is developed to separate CO2 from air using functionalized ionic liquid (IL) and poly(ionic liquid) (PIL) carriers. A highly permeable bicontinuous structured poly(ethersulfone)/poly(ethylene terephthalate) (bPES/PET) substrate is used to support the PIL-IL impregnated graphene oxide thin film. The CO2 separation performance was tested under a mixture feed of CO2/N2/O2/H2O. Under 410 ppm of CO2 at 1 atm feed gas, CO2 permanence of 3923 GPU, and CO2/N2 and CO2/O2 selectivities of 1200 and 300, respectively, are achieved with helium sweeping on the permeate side. For increased transmembrane pressure (>0 atm), a thicker PIL-IL/GO layer was shown to provide mechanical strength and prevent leaching of the mobile carrier. CO2 binding to the carriers, ion diffusivities, and the glass transition temperature of the PIL-IL gels were examined to determine the membrane composition and rationalize the superior separation performance obtained. This report represents the first FTM study with PIL-IL carriers for CO2 separation from air.
Collapse
Affiliation(s)
- Yun-Yang Lee
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nalinda P Wickramasinghe
- Northeast Ohio High Field NMR Facility, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ruth Dikki
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Darrell L Jan
- Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA 94043, USA.
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Zhang X, Jiao C, Li X, Song X, Plisko TV, Bildyukevich AV, Jiang H. Zn ion-modulated polyamide membrane with enhanced facilitated transport effect for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Morphology Effect of Zinc Oxide Nanoparticles on the Gas Separation Performance of Polyurethane Mixed Matrix Membranes for CO2 Recovery from CH4, O2, and N2. MEMBRANES 2022; 12:membranes12060577. [PMID: 35736291 PMCID: PMC9230613 DOI: 10.3390/membranes12060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
The effect of the morphology and content of zinc oxide nanoparticles (ZnO-NPs) on the physicochemical, mechanical, and gas transport properties of the polyurethane (PU) mixed matrix membranes (MMMs) with respect to CO2 recovery from CH4, O2, and N2 was studied. The MMMs based on PU with spherical and rod-shaped ZnO-NPs at various loadings, namely, 0.05, 0.1, 0.5, 1, and 2 wt. %, were prepared with membrane density control and studied using AFM, wettability measurements, surface free energy calculation, gas separation and mechanical testing. To evaluate the resistance of the ZnO-NPs to agglomeration in the polymer solutions, zeta potential was determined. The ZnO-NPs with average cross sectional size of 30 nm were obtained by plasma-enhanced chemical vapor deposition (PECVD) from elemental high-purity zinc in a zinc-oxygen-hydrogen plasma-forming gas mixture. It was established that the spherical ZnO-NPs are promising to improve the gas performance of PU-based MMMs for CO2 recovery from natural gas, while the rod-shaped NPs better demonstrate their potential in capturing CO2 in flue gases.
Collapse
|
9
|
Liang Z, Yang F, Li Y, Tang J, Dekel DR, He X. Designing the feasible membrane systems for CO2 removal from Air-fed Anion-Exchange membrane fuel cells. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Moving beyond 90% Carbon Capture by Highly Selective Membrane Processes. MEMBRANES 2022; 12:membranes12040399. [PMID: 35448369 PMCID: PMC9031579 DOI: 10.3390/membranes12040399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
A membrane-based system with a retentate recycle process in tandem with an enriching cascade was studied for >90% carbon capture from coal flue gas. A highly CO2-selective facilitated transport membrane (FTM) was utilized particularly to enhance the CO2 separation efficiency from the CO2-lean gases for a high capture degree. A techno-economic analysis showed that the retentate recycle process was advantageous for ≤90% capture owing to the reduced parasitic energy consumption and membrane area. At >90% capture, the enriching cascade outperformed the retentate recycle process since a higher feed-to-permeate pressure ratio could be applied. An overall 99% capture degree could be achieved by combining the two processes, which yielded a low capture cost of USD47.2/tonne, whereas that would be USD 42.0/tonne for 90% capture. This FTM-based approach for deep carbon capture and storage can direct air capture for the mitigation of carbon emissions in the energy sector.
Collapse
|
11
|
Zhu W, Ye H, Zou X, Yang Y, Dong H. Analysis and optimization for chemical absorption of H2S/CO2 system: Applied in a multiple gas feeds sweetening process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Han Y, Ho WW. Facilitated transport membranes for H2 purification from coal-derived syngas: A techno-economic analysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
|
15
|
Han Y, Yang Y, Ho WSW. Recent Progress in the Engineering of Polymeric Membranes for CO 2 Capture from Flue Gas. MEMBRANES 2020; 10:E365. [PMID: 33238418 PMCID: PMC7709046 DOI: 10.3390/membranes10110365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
CO2 capture from coal- or natural gas-derived flue gas has been widely considered as the next opportunity for the large-scale deployment of gas separation membranes. Despite the tremendous progress made in the synthesis of polymeric membranes with high CO2/N2 separation performance, only a few membrane technologies were advanced to the bench-scale study or above from a highly idealized laboratory setting. Therefore, the recent progress in polymeric membranes is reviewed in the perspectives of capture system energetics, process synthesis, membrane scale-up, modular fabrication, and field tests. These engineering considerations can provide a holistic approach to better guide membrane research and accelerate the commercialization of gas separation membranes for post-combustion carbon capture.
Collapse
Affiliation(s)
- Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
| | - Yutong Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210-1350, USA; (Y.H.); (Y.Y.)
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210-1178, USA
| |
Collapse
|
16
|
Han Y, Ho WSW. Recent advances in polymeric facilitated transport membranes for carbon dioxide separation and hydrogen purification. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
- Department of Materials Science and Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|