1
|
Lee H, Kwon S, Park N, Cha SG, Lee E, Kong TH, Cha J, Kwon Y. Scalable Low-Temperature CO 2 Electrolysis: Current Status and Outlook. JACS AU 2024; 4:3383-3399. [PMID: 39328755 PMCID: PMC11423314 DOI: 10.1021/jacsau.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The electrochemical CO2 reduction (eCO2R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO2R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO2R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO2R technologies with the hope of achieving industrially viable e-chemical production.
Collapse
Affiliation(s)
- Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seontaek Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Namgyoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun Gwan Cha
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Hoon Kong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihoo Cha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Firganek D, Donten ML, Van der Bruggen B. Impact of Formulation of Photocurable Precursor Mixtures on the Performance and Dimensional Stability of Hierarchical Cation Exchange Membranes. Ind Eng Chem Res 2023; 62:15928-15939. [PMID: 37810993 PMCID: PMC10557092 DOI: 10.1021/acs.iecr.3c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
This work presents a systematic approach to formulating UV curable ionomer coatings that can be used as ion-exchange membranes when they are applied on porous substrates. Ion-exchange membranes fabricated in this way can be a cost-effective alternative to perfluorosulfonic acid membranes, such as Nafion and similar thin ionomer film membranes. Hierarchically structured coated membranes find applications for energy storage and conversion (organic redox flow batteries and artificial photosynthesis cells) and separation processes (electrodialysis). Designing the ionomer precursor for membrane formulation requires the introduction of compounds with drastically different properties into a liquid mixture. Hansen solubility theory was used to find the solvents to compatibilize main formulation components: acrylic sulfone salt (3-sulfopropyl methacrylate potassium salt) and hexafunctional polyester acrylate cross-linker (Ebecryl 830), otherwise nonmiscible or mutely soluble. Among the identified suitable solvents, acrylic acid and acetic acid allowed for optimal mixing of the components and reaching the highest levels of sulfonic group content, providing the desired ion-exchange capacity. Interestingly, they represented a case of a reactive and nonreactive solvent since acrylic acid was built into the ionomer during the UV curing step. Properties of the two membrane variants were compared. Samples fabricated with acetic acid exhibit improved handleability compared with the case of acrylic acid. Acetic acid yielded a lower area-specific resistance (6.4 ± 0.17 Ohm·cm2) compared to acrylic acid (12.1 ± 0.16 Ohm·cm2 in 0.5 M NaCl). This was achieved without severely suppressing the selectivity of the membrane, which was standing at 93.4 and 96.4% for preparation with acetic and acrylic acid, respectively.
Collapse
Affiliation(s)
- Daniel Firganek
- Amer-Sil
S.A., 61 Rue d’Olm, L-8281Kehlen, Luxembourg
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | - Bart Van der Bruggen
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Sujanani R, Nordness O, Miranda A, Katz LE, Brennecke JF, Freeman BD. Accounting for Ion Pairing Effects on Sulfate Salt Sorption in Cation Exchange Membranes. J Phys Chem B 2023; 127:1842-1855. [PMID: 36795084 DOI: 10.1021/acs.jpcb.2c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ion exchange membranes (IEMs) are frequently used in water treatment and electrochemical applications, with their ion separation properties largely governed by equilibrium ion partitioning between a membrane and contiguous solution. Despite an expansive literature on IEMs, the influence of electrolyte association (i.e., ion pairing) on ion sorption remains relatively unexplored. In this study, salt sorption in two commercial cation exchange membranes equilibrated with 0.01-1.0 M MgSO4 and Na2SO4 is investigated experimentally and theoretically. Association measurements of salt solutions using conductometric experiments and the Stokes-Einstein approximation show significant concentrations of ion pairs in MgSO4 and Na2SO4 relative to those in simple electrolytes (i.e., NaCl), which is consistent with prior studies of sulfate salts. The Manning/Donnan model, developed and validated for halide salts in previous studies, substantially underpredicts sulfate sorption measurements, presumably due to ion pairing effects not accounted for in this established theory. These findings suggest that ion pairing can enhance salt sorption in IEMs due to partitioning of reduced valence species. By reformulating the Donnan and Manning models, a theoretical framework for predicting salt sorption in IEMs that explicitly considers electrolyte association is developed. Remarkably, theoretical predictions of sulfate sorption are improved by over an order of magnitude by accounting for ion speciation. In some cases, good quantitative agreement is observed between theoretical and experimental values for external salt concentrations between 0.1 and 1.0 M using no adjustable parameters.
Collapse
Affiliation(s)
- Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Oscar Nordness
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Andres Miranda
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Lynn E Katz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Petrov KV, Bui JC, Baumgartner L, Weng LC, Dischinger SM, Larson DM, Miller DJ, Weber AZ, Vermaas DA. Anion-exchange membranes with internal microchannels for water control in CO 2 electrolysis. SUSTAINABLE ENERGY & FUELS 2022; 6:5077-5088. [PMID: 36389085 PMCID: PMC9642111 DOI: 10.1039/d2se00858k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical reduction of carbon dioxide (CO2R) poses substantial promise to convert abundant feedstocks (water and CO2) to value-added chemicals and fuels using solely renewable energy. However, recent membrane-electrode assembly (MEA) devices that have been demonstrated to achieve high rates of CO2R are limited by water management within the cell, due to both consumption of water by the CO2R reaction and electro-osmotic fluxes that transport water from the cathode to the anode. Additionally, crossover of potassium (K+) ions poses concern at high current densities where saturation and precipitation of the salt ions can degrade cell performance. Herein, a device architecture incorporating an anion-exchange membrane (AEM) with internal water channels to mitigate MEA dehydration is proposed and demonstrated. A macroscale, two-dimensional continuum model is used to assess water fluxes and local water content within the modified MEA, as well as to determine the optimal channel geometry and composition. The modified AEMs are then fabricated and tested experimentally, demonstrating that the internal channels can both reduce K+ cation crossover as well as improve AEM conductivity and therefore overall cell performance. This work demonstrates the promise of these materials, and operando water-management strategies in general, in handling some of the major hurdles in the development of MEA devices for CO2R.
Collapse
Affiliation(s)
- Kostadin V Petrov
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Justin C Bui
- Department of Chemical Engineering, University of California Berkeley California 94720-1462 USA
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory California 94720-1462 USA
| | - Lorenz Baumgartner
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Lien-Chun Weng
- Department of Chemical Engineering, University of California Berkeley California 94720-1462 USA
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory California 94720-1462 USA
| | - Sarah M Dischinger
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory California 94720-1462 USA
| | - David M Larson
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory California 94720-1462 USA
| | - Daniel J Miller
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory California 94720-1462 USA
| | - Adam Z Weber
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory California 94720-1462 USA
| | - David A Vermaas
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| |
Collapse
|
5
|
Kim JM, Lin YH, Aravindhan PP, Beckingham BS. Impact of hydrophobic pendant phenyl groups on transport and co-transport of methanol and acetate in PEGDA-SPMAK cation exchange membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sujanani R, Katz LE, Paul DR, Freeman BD. Aqueous ion partitioning in Nafion: Applicability of Manning's counter-ion condensation theory. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kim JM, Lin YH, Hunter B, Beckingham BS. Transport and Co-Transport of Carboxylate Ions and Ethanol in Anion Exchange Membranes. Polymers (Basel) 2021; 13:2885. [PMID: 34502924 PMCID: PMC8433790 DOI: 10.3390/polym13172885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding multi-component transport behavior through hydrated dense membranes is of interest for numerous applications. For the particular case of photoelectrochemical CO2 reduction cells, it is important to understand the multi-component transport behavior of CO2 electrochemical reduction products including mobile formate, acetate and ethanol in the ion exchange membranes as one role of the membrane in these devices is to minimize the permeation of these products. Anion exchange membranes (AEM) have been employed in these and other electrochemical devices as they act to facilitate the transport of common electrolytes (i.e., bicarbonates). However, as they act to facilitate the transport of carboxylates as well, thereby reducing the overall performance, the design of new AEMs is necessary to improve device performance through the selective transport of the desired ion(s) or electrolyte(s). Here, we investigate the transport behavior of formate and acetate and their co-transport with ethanol in two types of AEMs: (1) a crosslinked AEM prepared by free-radical copolymerization of a monomer with a quaternary ammonium (QA) group and a crosslinker, and (2) Selemion® AMVN. We observe a decrease in diffusivities to carboxylates in co-diffusion. We attribute this behavior to charge screening by the co-diffusing alcohol, which reduces the electrostatic attraction between QAs and carboxylates.
Collapse
Affiliation(s)
| | | | | | - Bryan S. Beckingham
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA; (J.M.K.); (Y.-h.L.); (B.H.)
| |
Collapse
|
8
|
Allen MJ, Sujanani R, Chamseddine A, Freeman BD, Page ZA. Mechanically robust hydrophobized double network hydrogels and their fundamental salt transport properties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Marshall J. Allen
- Department of Chemistry The University of Texas Austin Texas USA
- McKetta Department of Chemical Engineering The University of Texas Austin Texas USA
| | - Rahul Sujanani
- McKetta Department of Chemical Engineering The University of Texas Austin Texas USA
| | - Alyssa Chamseddine
- McKetta Department of Chemical Engineering The University of Texas Austin Texas USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering The University of Texas Austin Texas USA
| | | |
Collapse
|
9
|
Kim JM, Beckingham BS. Transport and co‐transport of carboxylate ions and alcohols in cation exchange membranes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jung Min Kim
- Department of Chemical Engineering Auburn University Auburn Alabama USA
| | | |
Collapse
|
10
|
|
11
|
Kim JM, Dobyns BM, Zhao R, Beckingham BS. Multicomponent transport of methanol and acetate in a series of crosslinked PEGDA-AMPS cation exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|