1
|
Xia X, Liao Z, Deng J, Yang G, Nie X, Ma C, Cheng W, Pan N, Zhang W, Dong F. Efficient purification of low-level uranium-containing wastewater by polyamine/amidoxime synergistically reinforced fiber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123269. [PMID: 38159627 DOI: 10.1016/j.envpol.2023.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The removal and recovery of uranium [U(VI)] from organic containing wastewater has been a challenging in radioactive wastewater purification. Here, we designed a polyamine/amidoxime polyacrylonitrile fiber (PAN-AO-A) with high removal efficiency, excellent selectivity, excellent organic resistance and low cost by combining the anti-organic properties of amidoxime polyacrylonitrile fiber (PAN-AO-A) with the high adsorption capacity of polyamine polyacrylonitrile fiber, which is used to extract U(VI) from low-level uranium-containing wastewater with high ammonia nitrogen and organic content. PAN-AO-A adsorbent with high grafting rate (86.52%), high adsorption capacity (qe = 618.8 mg g-1), and strong resistance to organics and impurity interference is achieved. The adsorption rate of U(VI) in both real organic and laundry wastewater containing uranium is as high as 99.7%, and the partition coefficients (Kd) are 7.61 × 105 mL g-1 and 9.16 × 106 mL g-1, respectively. The saturated adsorption capacity of PAN-AO-A in the continuous system solution can reach up to 505.5 mg g-1, and the concentration of U(VI) in the effluent is as low as 1 μg L-1. XPS analysis and Density functional theory (DFT) studies the coordination form between U(VI) and PAN-AO-A, where the most stable structure is η2-AO(UO2)(CO3)2. The -NH-/-NH2 and -C(NH2)N-OH groups of PAN-AO-A exhibit a synergistic complex effect in the U(VI) adsorption process. PAN-AO-A is a material with profound influence and limitless potential that can be used for wastewater containing U(VI) and organic matter.
Collapse
Affiliation(s)
- Xue Xia
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhihui Liao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jianju Deng
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Guohui Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoqin Nie
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chunyan Ma
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wencai Cheng
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China; School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wei Zhang
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
2
|
Xin Q, Wang Q, Luo K, Lei Z, Hu E, Wang H, Wang H. Mechanism for the seleikctive adsorption of uranium from seawater using carboxymethyl-enhanced polysaccharide-based amidoxime adsorbent. Carbohydr Polym 2024; 324:121576. [PMID: 37985068 DOI: 10.1016/j.carbpol.2023.121576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Land-based uranium resources are becoming scarce because of the widespread development and use of nuclear energy. Therefore, to make up for the shortage of uranium resources, a new chitosan/carboxymethyl-β-cyclodextrin/quaternary ammonium salt-functionalized amidoxime carbon adsorbent (CSAOCF) was designed and synthesized for extracting uranium from seawater. Experimental studies show that the adsorption of uranium by CSAOCF is a spontaneous endothermic reaction and chemical adsorption. The theoretical maximum adsorption capacity of uranium can reach 726 mg/g at 308 K and pH = 6. Moreover, the adsorption efficiency and selectivity of CSAOCF for uranium were significantly improved after the introduction of the carboxymethyl group, and the selection and partition coefficient of CSAOCF for uranium and vanadium increased from 16-fold to 30-fold under the same conditions. This indicates that there is a synergistic effect between carboxyl and amidoxime groups, which can promote the adsorption of uranium by CSAOCF. Furthermore, CSAOCF exhibits good oil resistance and can be reused more than five times. Therefore, CSAOCF containing carboxymethyl and amidoxime functional groups can considerably improve the selective adsorption of uranium and has great potential in the extraction of uranium from seawater.
Collapse
Affiliation(s)
- Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Kaiwen Luo
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Gan J, Zhang L, Wang Q, Xin Q, Xiong Y, Hu E, Lei Z, Wang H, Wang H. Phosphorylation improved the competitive U/V adsorption on chitosan-based adsorbent containing amidoxime for rapid uranium extraction from seawater. Int J Biol Macromol 2023; 238:124074. [PMID: 36934816 DOI: 10.1016/j.ijbiomac.2023.124074] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
A novel chitosan-based porous composite adsorbent with multifunctional groups, such as phosphoric acid, amidoxime, and quaternary ammonium groups, was prepared to improve the adsorption rate and competitive uranium‑vanadium adsorption of amidoxime group adsorbents. The maximum uranium adsorption capacity of PACNC was 962.226 mg g-1 at 308 K and pH = 7. The maximum adsorption rate constant of PACNC for uranium was 2.83E-2 g mg-1 min-1, which is 2.38 times that of ACNC (1.19E-2 g mg-1 min-1). Moreover, the adsorption equilibrium time was shortened from 300 (ACNC) to 50 (PACNC) min. In simulated and real seawater, the Kd and adsorption capacity of PACNC for uranium were approximately 8 and 6.62 times those for vanadium, respectively. These results suggest that phosphorylation significantly improved the competitive adsorption of uranium‑vanadium and uranium adsorption rate. PACNC also exhibited good recycling performance and maintained stable adsorption capacity after five cycles. DFT calculations were used to analyze and calculate the possible co-complex structure of PACNC and uranium. The binding structure of phosphate and amidoxime is the most stable, and its synergistic effect effectively improves the competitive adsorption of uranium-vanadium of amidoxime. All the results demonstrated that PACNC has substantial application potential for uranium extraction from seawater.
Collapse
Affiliation(s)
- Jiali Gan
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Mussel-inspired polydopamine microspheres self-adhered on natural hemp fibers for marine uranium harvesting and photothermal-enhanced antifouling properties. J Colloid Interface Sci 2022; 622:109-116. [DOI: 10.1016/j.jcis.2022.04.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
|
5
|
Gu H, Yu J, Zhang H, Sun G, Li R, Liu P, Li Y, Wang J. Theory-Guided Design of a Method to Obtain Competitive Balance between U(VI) Adsorption and Swaying Zwitterion-Induced Fouling Resistance on Natural Hemp Fibers. Int J Mol Sci 2022; 23:6517. [PMID: 35742958 PMCID: PMC9223365 DOI: 10.3390/ijms23126517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
The competitive balance between uranium (VI) (U(VI)) adsorption and fouling resistance is of great significance in guaranteeing the full potential of U(VI) adsorbents in seawater, and it is faced with insufficient research. To fill the gap in this field, a molecular dynamics (MD) simulation was employed to explore the influence and to guide the design of mass-produced natural hemp fibers (HFs). Sulfobetaine (SB)- and carboxybetaine (CB)-type zwitterions containing soft side chains were constructed beside amidoxime (AO) groups on HFs (HFAS and HFAC) to form a hydration layer based on the terminal hydrophilic groups. The soft side chains were swayed by waves to form a hydration-layer area with fouling resistance and to simultaneously expel water molecules surrounding the AO groups. HFAS exhibited greater antifouling properties than that of HFAO and HFAC. The U(VI) adsorption capacity of HFAS was almost 10 times higher than that of HFAO, and the max mass rate of U:V was 4.3 after 35 days of immersion in marine water. This paper offers a theory-guided design of a method to the competitive balance between zwitterion-induced fouling resistance and seawater U(VI) adsorption on natural materials.
Collapse
Affiliation(s)
- Huiquan Gu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; (H.G.); (H.Z.); (R.L.); (P.L.)
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China;
| |
Collapse
|
6
|
Zhu P, Wang Y, Bai X, Pan J. CO2-in-Water Pickering Emulsion-Assisted Polymerization-Induced Self-Assembly of Raspberry-like sorbent microbeads for uranium adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Joshi R. Binding Study of Vanadium and Uranium Complexes with Amidoxime Ligands at different pH. ChemistrySelect 2021. [DOI: 10.1002/slct.202102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruma Joshi
- Mount Carmel College # 58, Palace Road Bengaluru Karnataka 560052
| |
Collapse
|
8
|
Huang C, Xu X, Ao J, Ma L, Ye F, Wang Z, Xu L, Zhao X, Ma H. Selective Adsorption, Reduction, and Separation of Au(III) from Aqueous Solution with Amine-Type Non-Woven Fabric Adsorbents. MATERIALS 2020; 13:ma13132958. [PMID: 32630807 PMCID: PMC7372446 DOI: 10.3390/ma13132958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
Herein, adsorption, separation, and reduction of Au(III) from its aqueous solution were studied with different amine-type, non-woven fabric (NF) adsorbents fabricated with radiation-induced graft polymerization. The adsorbents exhibited different adsorption capacities of Au(III) over a concentration range of hydrochloric acid (HCl) from 5 mM to 5 M, and the diethylamine (DEA)-type adsorbent performed best under all test conditions. The DEA-type adsorbent was inert toward other metal ions, including Cu(II), Pb(II), Ni(II), Zn(II) and Li(I), within the fixed concentration range of HCl. Flow-through adsorption tests indicated DEA-type adsorbent exhibited a rapid recovery and high adsorption capacity of 3.23 mmol/g. Meanwhile, DEA-type adsorbent also exhibited high selectivity and rapid extraction for Au(III) from its mixed solution with Pt(IV) and Pd(II). After adsorption, the reduction of Au(III) was confirmed by XRD spectra, TEM, and digital micrograph images. The results indicated that nano-sized Au particles were mainly concentrated on the adsorbent in 5 mM HCl solution. In 1 M HCl solution, not only nano-sized Au particles were found, but also micro-size Au plates precipitation occurred. This study provides a novel material for selective and efficient gold uptake from aqueous solution.
Collapse
Affiliation(s)
- Chen Huang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Xiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Xiaoyan Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
- Correspondence: (X.Z.); (H.M.); Tel.: +86-1891-589-6792 (X.Z.); +86-1361-176-4034 (H.M.)
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- Correspondence: (X.Z.); (H.M.); Tel.: +86-1891-589-6792 (X.Z.); +86-1361-176-4034 (H.M.)
| |
Collapse
|