1
|
Hurley T, Remcho VT, Stylianou KC. Recovery of Berry Natural Products Using Pyrene-Based MOF Solid Phase Extraction. Chemistry 2024; 30:e202402221. [PMID: 39250519 DOI: 10.1002/chem.202402221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
This work introduces a novel method of recovering bioactive berry natural products (BNPs) using solid phase extraction with metal-organic frameworks (MOF-SPE). Two pyrene-based MOFs with different structural topologies, Al-PyrMOF and Zr-NU-1000, were evaluated for their ability to capture and desorb BNPs, including ellagic acid, quercetin, gallic acid, and p-coumaric acid. Time-dependent BNP uptake via dispersive SPE revealed that NU-1000 outperformed Al-PyrMOF in capturing all BNPs. Our findings show NU-1000 demonstrated a higher and more consistent BNP capture profile, achieving over 90 % capture of all BNPs within 36 h, with only a 9 % variation between the most and least effectively captured BNPs. In contrast, Al-PyrMOF, displayed a staggered uptake profile, with a significant 53 % difference in capture efficiency between the most and least effectively captured BNP. However, when a BNP mixture was used at a loading concentration of 50 μg/mL, Al-PyrMOF outperformed NU-1000, capturing over 70 % of all BNPs. Al-PyrMOF also exhibited improved BNP recovery, with a minimum of two-fold greater amount recovered for all BNPs. Further testing with a BNP mixture at a concentration of 15 μg/mL demonstrated that Al-PyrMOF efficiently concentrated all BNPs, achieving a maximum extraction factor of 2.71 observed for quercetin. These findings highlight the use of Al-PyrMOF as a MOF-SPE sorbent for recovering bioactive BNPs.
Collapse
Affiliation(s)
- Tara Hurley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, United States
| | - Vincent T Remcho
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, United States
| | - Kyriakos C Stylianou
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, United States
| |
Collapse
|
2
|
Gupta G, Paul A, Gupta A, Lee J, Lee CY. Removal of organic dyes from aqueous solution using a novel pyrene appended Zn(II)-based metal-organic framework and its photocatalytic properties. Dalton Trans 2024; 53:15732-15741. [PMID: 39253790 DOI: 10.1039/d4dt01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In this study, we report the efficient removal of organic dyes from aqueous solutions using a newly synthesized pyrene-appended Zn(II)-based metal-organic framework (MOF), ZnSiF6Pyrene MOF, with the chemical formula C52H32F6N4SiZn·4(CHCl3). The MOF was synthesized through a facile method at room temperature using a dipyridylpyrene ligand and ZnSiF6 metal source, resulting in a highly crystalline structure with pyrene functional groups forming the framework. The synthesized MOF was characterized using various analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis, and scanning electron microscopy (SEM). Thermal stability was assessed using thermogravimetric analysis (TGA), while the surface area of the MOF was determined using a Brunauer-Emmett-Teller (BET) surface analyzer. Furthermore, the single-crystal X-ray diffraction (SCXRD) structure was studied to authenticate its solid-state structure. The as-synthesized MOF exhibited remarkable adsorption capacity towards various organic dyes, including Congo red (CR), rhodamine B (RhB), and methyl violet (MV), due to its ample surface area and strong π-π interactions between the pyrene moieties and dye molecules, as demonstrated by experimental and in silico docking studies. The photocatalytic degradation of MV dye was also investigated. Detailed trapping tests indicate that hydroxyl (˙OH) and superoxide (O2˙-) radicals are likely the primary active species responsible for the photodegradation of the dye under study. Furthermore, the photocatalytic property of the MOF was investigated under visible light irradiation, demonstrating excellent ability to generate singlet oxygen. This study highlights the potential of pyrene-appended Zn(II)-based MOFs as promising materials for environmental remediation applications.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Anup Paul
- Centro de Química Estrutural, Instituto of Molecular Sciences, Superior Técnico para Investigacao do Instituto Departmento de Engenharia Química, IST-ID Associação Desenvolvimento, Universidade de Lisboa, 1000-043 Lisboa, Portugal.
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies, North Eastern Hill University, Shillong, 793022, India
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
3
|
Dedecker K, Drobek M, Julbe A. Effect of Ligand Aromaticity on Cyclohexane and Benzene Sorption in IRMOFs: A Computational Study. J Phys Chem B 2023; 127:11091-11099. [PMID: 38088922 DOI: 10.1021/acs.jpcb.3c06886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A series of four isoreticular MOFs (IRMOF-1, -10, -14, and -16) were selected for a computational investigation of the effect of ligand aromaticity on the adsorption capacity of an aromatic VOC (benzene) compared to its nonaromatic analog (cyclohexane). The affinity of the adsorbates was evaluated by calculating Henry's constants and adsorption enthalpies. It has been evidenced that while KH values decrease with ligand elongation (IRMOF-10 and -16), inserting a pyrene core into the MOF structure (IRMOF-14) increases both the cyclohexane and benzene adsorption efficiency by ∼290 and 54%, respectively. To elucidate host-guest interactions, we sought to locate preferential adsorption sites in MOF structures for the two VOCs studied by using the GCMC method. It appears that benzene interacts with the metal center (Zn4O clusters) and most of the ligand while cyclohexane tends to localize preferentially only near the Zn4O clusters. Coadsorption isotherms (equimolar mixture of benzene and cyclohexane) demonstrated the preferential adsorption of cyclohexane due to the stronger affinity for the MOF structure. On the other hand, for other isoreticular structures, the ligand elongation leads to a shift of the adsorption curve of cyclohexane caused by pore size increase and therefore less interactions with the walls. This phenomenon is counterbalanced in the case of IRMOF-14 due to stronger interactions between the cyclohexane and pyrene groups. The present results thus open perspectives in the design of promising MOF candidates for high-performing separation and sorption/detection of hydrocarbon VOCs.
Collapse
Affiliation(s)
- Kevin Dedecker
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| | - Martin Drobek
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| | - Anne Julbe
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
4
|
Lu YC, Anedda R, Lai LL. Shape-Persistent Dendrimers. Molecules 2023; 28:5546. [PMID: 37513417 PMCID: PMC10385424 DOI: 10.3390/molecules28145546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dendrimers have a diverse and versatile morphology, frequently consisting of core, linking, and peripheral moieties. Dendrimers with flexible linkers, such as PAMAM, cannot retain the persistent shape of molecules, and this has been widely explored and reviewed previously; nevertheless, dendrimers with stiff linkers can preserve the persistent shape of the dendrimers, which has been reported considerably less. This review thus focuses on addressing shape-persistent dendrimers with rigid linking moieties discovered in recent years, i.e., from 2012 to 2023. Shape-persistent dendrimers with an interstitial gap between the dendritic frames in the solid state may or may not let the intramolecular void space be accessible for guest molecules, which largely depends on whether their peripheral groups are flexible or non-flexible. In this paper, eight articles on shape-persistent dendrimers with a flexible alkyl periphery, which may exhibit mesogenic phases upon thermal treatment, and eight articles on shape-persistent dendrimers with a non-flexible periphery, which may allow external ions, gases, or volatile organic compounds to access the interstitial gaps between dendritic frames, are reviewed.
Collapse
Affiliation(s)
- Yao-Chih Lu
- Department of Applied Chemistry, National Chi Nan University, Puli 545, Taiwan
| | - Roberto Anedda
- Porto Conte Ricerche Srl, S.P. 55 Porto Conte-Capo Caccia, Km 8,400, Loc. Tramariglio 15, 07041 Alghero, Italy
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, Puli 545, Taiwan
| |
Collapse
|
5
|
Kaur G, Anthwal A, Kandwal P, Sud D. Mechanochemical synthesis and theoretical investigations of Fe (II) based MOF containing 4,4′-bipyridine with ordained intercalated p-aminobenzoic acid: Application as fluoroprobe for detection of carbonyl group. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ursueguía D, Daniel C, Collomb C, Cardenas C, Farrusseng D, Díaz E, Ordóñez S. Evaluation of HKUST-1 as Volatile Organic Compound Adsorbents for Respiratory Filters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14465-14474. [PMID: 36383640 DOI: 10.1021/acs.langmuir.2c02332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cyclohexane is a representative of volatile organic compounds (VOCs). VOCs can cause serious health problems in case of continuous exposure; therefore, it is essential to develop efficient personal protective equipment. Historically, activated carbons are used as VOC adsorbents. However, the emergence of promising novel adsorbents, such as metal-organic frameworks, has pushed the research to study their behavior under the same conditions. In this work, the use of the well-known HKUST-1 MOF of different particle sizes (20 μm, 300-600 μm, and 1-1.18 mm) for the adsorption of low-grade (5000 ppm) cyclohexane combined with different water concentrations (dry, 27 and 80% RH) in a fixed bed is proposed. The results were compared under the same conditions for a typically used activated carbon, PICACTIF TA 60. HKUST-1 has higher affinity to cyclohexane than PICACTIF for the whole pressure range studied, especially at low partial pressures. It begins to adsorb much earlier (0.0025 kPa) than the activated carbon (0.01 kPa). However, a different adsorption behavior is evidenced for both materials in the presence of water vapor since HKUST-1 is very hydrophilic in the zone near to the copper open metal sites, whereas PICACTIF is hydrophobic. After three consecutive cycles, good stability results were obtained for the MOF, comparable to activated carbon, even in the presence of water. As the main finding, although the unstability of HKUST-1 is well established under high humid conditions, the kinetic of degradation has not been established so far. Here, it is shown that the time usage of HKUST-1 as the adsorbent for respiratory mask (single pass) is not affected by the degradation of the structure, which may occur on a longer time scale. Finally, shaping by tableting provides good results since it is possible to increase the MOF density by around 69% with minor loss of adsorption capacity. The best fraction is 300-600 μm, reaching cyclohexane breakthrough times around 85 min/cm3 at 80% RH, comparable with PICACTIF-activated carbon and promising for practical applications.
Collapse
Affiliation(s)
- D Ursueguía
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julián Clavería s/n, Oviedo 33006, Spain
| | - C Daniel
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - C Collomb
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - C Cardenas
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - D Farrusseng
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - E Díaz
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julián Clavería s/n, Oviedo 33006, Spain
| | - S Ordóñez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julián Clavería s/n, Oviedo 33006, Spain
| |
Collapse
|
7
|
Gu ZT, Tzeng CH, Chien HJ, Chen CC, Lai LL. Dendrimers with Tetraphenylmethane Moiety as a Central Core: Synthesis, a Pore Study and the Adsorption of Volatile Organic Compounds. Int J Mol Sci 2022; 23:ijms231911155. [PMID: 36232460 PMCID: PMC9570496 DOI: 10.3390/ijms231911155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Reasonable yields of two dendrimers with central tetraphenylmethane and peripheral 3,5-di-(tert-butanoylamino)benzoylpiperazine moieties are prepared. These dendrimers have a void space in the solid state so they adsorb guest molecules. Their BET values vary, depending on the H-bond interaction between the peripheral moiety and the gas molecules, and the dendritic framework that fabricates the void space is flexible. In the presence of polar gas molecules such as CO2, the BET increases significantly and is about 4–8 times the BET under N2. One dendrimer adsorbs cyanobenzene to a level of 436 mg/g, which, to the authors’ best knowledge, is almost equivalent to the highest reported value in the literature.
Collapse
Affiliation(s)
- Zi-Ting Gu
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 54561, Taiwan
| | - Chung-Hao Tzeng
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 54561, Taiwan
| | - Hung-Jui Chien
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| | - Chun-Chi Chen
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 54561, Taiwan
- Correspondence: ; Tel.: +886-49-2910960 (ext. 4976)
| |
Collapse
|
8
|
An Au(I)-based coordination/hydrogen-bond hybrid open framework for luminescence sensing of temperature and benzene. Sci Bull (Beijing) 2022; 67:1229-1232. [PMID: 36546151 DOI: 10.1016/j.scib.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023]
|
9
|
Soldatova NS, Postnikov PS, Ivanov DM, Semyonov OV, Kukurina OS, Guselnikova O, Yamauchi Y, Wirth T, Zhdankin VV, Yusubov MS, Gomila RM, Frontera A, Resnati G, Kukushkin VY. Zwitterionic iodonium species afford halogen bond-based porous organic frameworks. Chem Sci 2022; 13:5650-5658. [PMID: 35694330 PMCID: PMC9116302 DOI: 10.1039/d2sc00892k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering, Institute of Chemical Technology Prague 16628 Czech Republic
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Oleg V Semyonov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga S Kukurina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Wirth
- School of Chemistry, Cardiff University Park Place Cardiff UK
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth MN 55812 USA
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Rosa M Gomila
- Serveis Científico-Tècnics, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Giuseppe Resnati
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- NFMLab, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"; Politecnico di Milano via Mancinelli 7 I-20131 Milano Italy
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| |
Collapse
|
10
|
Peyravi A, Hashisho Z, Crompton D, Anderson JE. Porous carbon black-polymer composites for volatile organic compound adsorption and efficient microwave-assisted desorption. J Colloid Interface Sci 2022; 612:181-193. [PMID: 34992018 DOI: 10.1016/j.jcis.2021.12.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Adsorbents with high surface area, thermal stability and microwave absorption ability are highly desired for cyclic adsorption and microwave regeneration processes. However, most polymeric adsorbents are transparent to microwaves. Herein, porous hyper-crosslinked polymers (HCP) of (4,4'-bis((chloromethyl)-1,1'-biphenyl-benzyl chloride)) with different carbon black (CB) contents were synthesized via the Friedel-Crafts reaction. CB was selected as the filler due to its low cost and high dielectric loss and was embedded inside the polymer structure during polymerization. CB-containing composites showed enhanced thermal stability at elevated temperatures, and more than a 90-times increase in the dielectric loss factor, which is favorable for microwave regeneration. Nitrogen physisorption analysis by the Bruner-Emmett-Teller isotherms demonstrated that CB presence in the polymer structure nonlinearly decreases the surface area and total pore volume (by 38% and 26%, respectively at the highest CB load). Based on the characterization testing, 4 wt% of CB was found to be an optimum filler content, having the highest MW absorption and minimal effect on the adsorbent porosity. HCP with 4 wt% CB allowed a substantial increase in the desorption temperature and yielded more than a 450% enhancement in the desorption efficiency compared to HCP without CB.
Collapse
Affiliation(s)
- Arman Peyravi
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Zaher Hashisho
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada.
| | - David Crompton
- Ford Motor Company, Environmental Quality Office, Dearborn, MI 48121, USA
| | - James E Anderson
- Ford Motor Company, Research and Advanced Engineering, Dearborn, MI 48121, USA
| |
Collapse
|
11
|
Li S, Zhang ZY, Zhang H, Bai YL, Cui L, Li C. Synthesis of a luminescent macrocycle and its crystalline structure-adaptive transformation. Org Chem Front 2022. [DOI: 10.1039/d2qo00926a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report that the marriage of macrocycle chemistry and crystal engineering provides interesting macrocycle crystals with switchable luminescence and structure-adaptive transformation.
Collapse
Affiliation(s)
- Shuo Li
- College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Zhi-Yuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Haichang Zhang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, P. R. China
| | - Yue-Ling Bai
- College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Lei Cui
- College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Chunju Li
- College of Science, Shanghai University, Shanghai 200444, P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
12
|
Adsorbing Volatile Organic Chemicals by Soluble Triazine-Based Dendrimers under Ambient Conditions with the Adsorption Capacity of Pyridine up to 946.2 mg/g. Molecules 2021; 26:molecules26164862. [PMID: 34443449 PMCID: PMC8398626 DOI: 10.3390/molecules26164862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
Two triazine-based dendrimers with peripheral 1,3,5-triamidobenzene (1-3-5-TAB) functionality were prepared, and their void spaces in the bulk solid were investigated. We examined dendrimers of three core lengths and determined the one with the longest core exhibits the largest void space because the peripheral amides were not imbedded in the internal space of each dendritic molecule. The new dendrimers as solids were observed to adsorb volatile organic chemicals efficiently. Importantly, because the dendrimers are soluble in organic solvents, the adsorbed VOCs can be quantified by 1H-NMR spectroscopy by choosing a chemical shift (δ) of dendrimers as the internal standard to exclude interfering impurity signals, a much simpler and more efficient protocol than the traditional GC technique for the VOC quantification. One dendrimer was found to adsorb 24 equivalents of pyridine, so its adsorption capacity is equivalent to 946.2 mg/g. This is a more than 2-fold increase than the reported values by other porous materials.
Collapse
|
13
|
Li J, Yao SL, Liu SJ, Chen YQ. Fluorescent sensors for aldehydes based on luminescent metal-organic frameworks. Dalton Trans 2021; 50:7166-7175. [PMID: 33978009 DOI: 10.1039/d1dt00890k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Volatile aldehydes cause great harm to human health and the living environment, and the detection of aldehydes has attracted much attention from chemists and material scientists. In recent years, as one of the most promising classes of functional materials, luminescent metal-organic frameworks (LMOFs) have bloomed as fluorescent sensors for the detection of aldehydes. Herein, the sensing properties of LMOF sensors toward formaldehyde, benzaldehyde, acetaldehyde and other aldehydes have been reviewed, and the sensing mechanism and applications are also illustrated. Additionally, the current status and its potential development prospects in this field are outlined.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Shu-Li Yao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yong-Qiang Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China. and Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi Province, P.R. China.
| |
Collapse
|
14
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
15
|
He YC, Wang Y, Zhao FH, Wang YC, Wang KX, Yang HK, Xu N. Syntheses, structures and properties of two Ni(II) coordination polymers based on an anionic ligand deprotonated 5-((3-carboxyphenoxy)methyl)benzene-1,3-dioic acid and different neutral ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Chen Y, Zhang X, Chen H, Drout RJ, Chen Z, Mian MR, Maldonado RR, Ma K, Wang X, Xia Q, Li Z, Islamoglu T, Snurr RQ, Farha OK. Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44762-44768. [PMID: 32909742 DOI: 10.1021/acsami.0c13022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing flexible metal-organic frameworks (MOFs) with targeted properties is of high interest given their demonstrated potential as smart materials that undergo structural transformations in response to external stimuli. Herein, we report a flexible and interpenetrated indium-based MOF, NU-50, comprising four-connected [In(CO2)4]- nodes and tetracarboxylate pyrene-based ligands assembled in the pts topology. The flexible framework of NU-50 exhibits intricate structural transformations upon exposure to external stimuli, namely, guest solvent molecules and elevated temperatures. The high density of pyrene moieties throughout the interpenetrated framework offers numerous sites for the adsorption of highly conjugated guest molecules such as atrazine via π-π interactions. As a result, NU-50 efficiently removes atrazine from water, achieving a maximum atrazine uptake capacity of 74 mg of atrazine per gram of NU-50. Molecular simulations reveal that the dynamic behavior of NU-50 involves the distortion of metal-ligand bonds, resulting in a narrow pore structure that affords effective adsorption of atrazine molecules in a sandwich-like geometry. Moreover, washing in acetone quickly regenerates the sorbent.
Collapse
Affiliation(s)
- Yongwei Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Riki J Drout
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rodrigo R Maldonado
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|