1
|
Hu Y, Fang Z, Yao B, Ye Z, Peng X. Ferrocene Derivatives for Photothermal Applications. CHEMSUSCHEM 2024; 17:e202400829. [PMID: 38884174 DOI: 10.1002/cssc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Ferrocene (Fc) and Fc derivatives have gained popularity in recent years due to their unique structure and characteristics. Among Fc's diverse performances, photothermal conversion, as a primary source of energy conversion, has sparked substantial study attention. This Review summaries Fc and Fc derivatives with photothermal characteristics, as well as their applications developed recently. First, methods for the synthesis of Fc-based materials are systematically discussed. Then, the photothermal conversion mechanism based on nonradiative relaxation is summarized. Furthermore, the most recent advances in Fc-based materials in photothermal applications are described, including photothermal degradation, photothermal antibacterial, photothermal therapies, photothermal catalysis, solar-driven water production, and photothermal CO2 separation. Finally, a summary and insights on the photothermal application of Fc-based materials are provided. This paper seeks to provide researchers with a better knowledge of photothermal behavior while also highlighting the potential of Fc and its derivatives in photothermal fields.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhou Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Bing Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| |
Collapse
|
2
|
Permana AD, Maharani SN, Aziz AYR, Ramadhany ID, Himawan A, Habibie, Asri RM, Amir MN, Masadah R. Iron-responsive nanoparticle-loaded bilayer dissolving microneedles for selective and controlled transdermal delivery of deferasirox in β-thalassemia major treatment. Colloids Surf B Biointerfaces 2024; 247:114416. [PMID: 39637697 DOI: 10.1016/j.colsurfb.2024.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Deferasirox (DFX) is widely used to manage β-thalassemia major (β-TM), but its oral administration is limited by low bioavailability and side effects. To address these challenges, we developed iron-responsive nanoparticles (NP-IR) of DFX using ferrocene as the iron-responsive material, incorporated into dissolving microneedles (DMN) for transdermal delivery. The NP-IR measured 276.67 ± 7.80 nm with an entrapment efficiency of 47.54 ± 3.68 %. FTIR analysis confirmed DFX incorporation, while reduced crystallinity suggested enhanced formulation. In vitro testing demonstrated controlled DFX release in the presence of iron, highlighting its targeted responsiveness. The DMN containing NP-IR, composed of polyvinyl pyrrolidone and polyvinyl alcohol, showed less than 10 % height reduction and successfully penetrated the fourth layer of Parafilm®, simulating human skin penetration. Ex vivo studies validated effective DFX delivery through rat skin with high iron selectivity, while in vivo experiments in an iron overload rat model revealed sustained, controlled release, outperforming oral administration and potentially ehancing DFX efficacy in β-TM treatment.
Collapse
Affiliation(s)
- Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | | | | | | | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Habibie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Muhammad Nur Amir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Rina Masadah
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
3
|
Zhang L, Wang C, Li Y, Wang H, Sun K, Lu S, Wang Y, Jing S, Cordes T. Modular Design and Scaffold-Synthesis of Multi-Functional Fluorophores for Targeted Cellular Imaging and Pyroptosis. Angew Chem Int Ed Engl 2024:e202415627. [PMID: 39555698 DOI: 10.1002/anie.202415627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/19/2024]
Abstract
Fluorophores are essential tools for optical imaging and biomedical research. Their synthetic modification to incorporate new functions, however, remains a challenging task. Conventional strategies rely on linear synthesis in which a parent framework is gradually extended. We here designed and synthesized a versatile library of multi-functional fluorophores via a scaffold-based Ugi four-component reaction (U-4CR). The adaptability of the scaffold is achieved through modification of starting materials. This allows to use a small range of starting materials for the creation of fluorogenic probes that can detect reactive-oxygen species and where the localization into subcellular organelles or membranes can be controlled. We present reaction yields ranging from 60 % to 90 % and discovered that some compounds can even function as imaging and therapeutic agents via Fenton chemistry inducing pyroptosis in living cancer cells. Our study underlines the potential of scaffold-based synthesis for versatile creation of functional fluorophores and their applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Chunhui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Yuanyuan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Kunhui Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Siyu Lu
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Cybulski M, Michalak O, Buchowicz W, Mazur M. Ansa-Ferrocene Derivatives as Potential Therapeutics. Molecules 2024; 29:4903. [PMID: 39459271 PMCID: PMC11510318 DOI: 10.3390/molecules29204903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
It has been known since the 1990s that the introduction of a ferrocenyl-type substituent into compounds with proven biological activity can improve their properties. More recently, it was also shown that a carbon bridge connecting the two cyclopentadienyl rings in ferrocene derivatives could enhance the biological properties of the new compounds compared to those without them. However, the synthesis of ferrocenes with this additional linker, known as ansa-ferrocenes, is more difficult due to advanced synthetic protocols and the phenomenon of planar chirality in ring-substituted compounds. As a result, research into the formation of hybrids, conjugates and other ansa-ferrocene derivatives has not been widely conducted. This review discusses the potential biological properties of these units, covering scientific articles published between 1980 and 2024.
Collapse
Affiliation(s)
- Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network–Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (M.C.); (O.M.)
| | - Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network–Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (M.C.); (O.M.)
| | - Włodzimierz Buchowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Maria Mazur
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network–Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (M.C.); (O.M.)
| |
Collapse
|
5
|
Rothe R, Xu Y, Wodtke J, Brandt F, Meister S, Laube M, Lollini PL, Zhang Y, Pietzsch J, Hauser S. Programmable Release of Chemotherapeutics from Ferrocene-Based Injectable Hydrogels Slows Melanoma Growth. Adv Healthc Mater 2024; 13:e2400265. [PMID: 39007274 DOI: 10.1002/adhm.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel-based injectable drug delivery systems provide temporally and spatially controlled drug release with reduced adverse effects on healthy tissues. Therefore, they represent a promising therapeutic option for unresectable solid tumor entities. In this study, a peptide-starPEG/hyaluronic acid-based physical hydrogel is modified with ferrocene to provide a programmable drug release orchestrated by matrix-drug interaction and local reactive oxygen species (ROS). The injectable ROS-responsive hydrogel (hiROSponse) exhibits adequate biocompatibility and biodegradability, which are important for clinical applications. HiROSponse is loaded with the two cytostatic drugs (hiROSponsedox/ptx) doxorubicin (dox) and paclitaxel (ptx). Dox is a hydrophilic compound and its release is mainly controlled by Fickian diffusion, while the hydrophobic interactions between ptx and ferrocene can control its release and thus be regulated by the oxidation of ferrocene to the more hydrophilic state of ferrocenium. In a syngeneic malignant melanoma-bearing mouse model, hiROSponsedox/ptx slows tumor growth without causing adverse side effects and doubles the relative survival probability. Programmable release is further demonstrated in a tumor model with a low physiological ROS level, where dox release, low dose local irradiation, and the resulting ROS-triggered ptx release lead to tumor growth inhibition and increased survival.
Collapse
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Yong Xu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Pier-Luigi Lollini
- Alma Mater Studiorum, University of Bologna, Department of Medical and Surgical Sciences, Viale Filopanti 22, Bologna, 40126, Italy
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Bergstrasse 66, 01069, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|
6
|
Ma X, Luan Z, Zhao Q, Yang A, Li J. NIR-Triggered Release of Nitric Oxide by Upconversion-Based Nanoplatforms to Enhance Osteogenic Differentiation of Mesenchymal Stem Cells for Osteoporosis Therapy. Biomater Res 2024; 28:0058. [PMID: 39040622 PMCID: PMC11260887 DOI: 10.34133/bmr.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Stem cell therapy is an attractive approach to bone tissue regeneration in osteoporosis (OP); however, poor cell engraftment and survival within injured tissues limits its success in clinical settings. Nitric oxide (NO) is an important signaling molecule involved in various physiological processes, with emerging evidence supporting its diverse roles in modulating stem cell behavior, including survival, migration, and osteogenic differentiation. To control and enhance osteogenic differentiation of mesenchymal stem cells (MSCs) for OP therapy, we designed a near-infrared (NIR) light-triggered NO-releasing nanoplatform based on upconversion nanoparticles (UCNPs) that converts 808-nm NIR light into visible light, stimulating NO release by light control. We demonstrate that the UCNP nanoplatforms can encapsulate a light-sensitive NO precursor, Roussin's black salt (RBS), through the implementation of a surface mesoporous silica coating. Upon exposure to 808-nm irradiation, NO is triggered by the controlled upconversion of UCNP visible light at the desired time and location. This controlled release mechanism facilitates photoregulated differentiation of MSCs toward osteogenic lineage and avoids thermal effects and phototoxicity on cells, thus offering potential therapeutic applications for treating OP in vivo. Following the induction of osteogenic differentiation, the UCNP nanoplatforms exhibit the capability to serve as nanoprobes for the real-time detection of differentiation through enzymatic digestion and fluorescence recovery of UCNPs, enabling assessment of the therapeutic efficacy of OP treatment. Consequently, these UCNP-based nanoplatforms present a novel approach to control and enhance osteogenic differentiation of MSCs for OP therapy, simultaneously detecting osteogenic differentiation for evaluating treatment effectiveness.
Collapse
Affiliation(s)
- Xulu Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| | - Zhao Luan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| | - Qingxin Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
8
|
Yang Z, Wang J, Li A, Wang C, Ji W, Pires E, Yang W, Jing S. Ferrocenylselenoether and its cuprous cluster modified TiO 2 as visible-light photocatalyst for the synergistic transformation of N-cyclic organics and Cr(vi). RSC Adv 2024; 14:1488-1500. [PMID: 38174284 PMCID: PMC10763662 DOI: 10.1039/d3ra07390d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, fcSe@TiO2 and [Cu2I2(fcSe)2]n@TiO2 nanosystems based on ferrocenylselenoether and its cuprous cluster were developed and characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and electron paramagnetic resonance (EPR). Under optimized conditions, 0.2 g L-1 catalyst, 20 mM H2O2, and initial pH 7, good synergistic visible light photocatalytic tetracycline degradation and Cr(vi) reduction were achieved, with 92.1% of tetracycline and 64.5% of Cr(vi) removal efficiency within 30 minutes. Mechanistic studies revealed that the reactive species ˙OH, ˙O2-, and h+ were produced in both systems through the mutual promotion of Fenton reactions and photogenerated charge separation. The [Cu2I2(fcSe)2]n@TiO2 system additionally produced 1O2 from Cu+ and ˙O2-. The advantages of the developed nanosystems include an acidic surface microenvironment provided by Se⋯H+, resourceful product formation, tolerance of complex environments, and excellent adaptability in refractory N-cyclic organics.
Collapse
Affiliation(s)
- Zhuo Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jinshan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
| | - Chao Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wei Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Elísabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
9
|
Zhang Q, Gao Y, Cheng L, Li Y, Xu S, Chen B. The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3102. [PMID: 38132999 PMCID: PMC10745397 DOI: 10.3390/nano13243102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Novel and high-security anti-counterfeiting technology has always been the focus of attention and research. This work proposes a nanocomposite combination of upconversion nanoparticles (UCNPs) and perovskite quantum dots (PeQDs) to achieve color-adjustable dual-mode luminescence anti-counterfeiting. Firstly, a series of NaGdF4: Yb/Tm UCNPs with different sizes were synthesized, and their thermal-enhanced upconversion luminescence performances were investigated. The upconversion luminescence (UCL) intensity of the samples increases with rising temperature, and the UCL thermal enhancement factor rises as the particle size decreases. This intriguing thermal enhancement phenomenon can be attributed to the mitigation of surface luminescence quenching. Furthermore, CsPbBr3 PeQDs were well adhered to the surfaces and surroundings of the UCNPs. Leveraging energy transfer and the contrasting temperature responses of UCNPs and PeQDs, this nanocomposite was utilized as a dual-mode thermochromic anti-counterfeiting system. As the temperature increases, the color of the composite changes from green to pink under 980 nm excitation, while it displays green to non-luminescence under 365 nm excitation. This new anti-counterfeiting material, with its high security and convenience, has great potential in anti-counterfeiting applications.
Collapse
Affiliation(s)
- Qun Zhang
- School of Science, Dalian Maritime University, Dalian 116026, China; (Q.Z.); (Y.L.); (B.C.)
| | - Yuefeng Gao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Lihong Cheng
- School of Science, Dalian Maritime University, Dalian 116026, China; (Q.Z.); (Y.L.); (B.C.)
| | - You Li
- School of Science, Dalian Maritime University, Dalian 116026, China; (Q.Z.); (Y.L.); (B.C.)
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian 116026, China; (Q.Z.); (Y.L.); (B.C.)
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian 116026, China; (Q.Z.); (Y.L.); (B.C.)
| |
Collapse
|
10
|
Khalladi A, Kovalski E, Abdulmalic MA, Rüffer T, Yuan Q, Naïli H, Korb M, Lang H. Ferrocenyl-based di- and trinuclear lanthanide complexes: solid state structures, (spectro)electrochemical and DFT studies. Dalton Trans 2023; 52:17717-17730. [PMID: 38010135 DOI: 10.1039/d3dt00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Dinuclear and trinuclear ferrocenylcarboxylato-bridged lanthanide complexes of type [Ln(μO:κ2OO'-O2CFc)(O2CFc)2(H2O)(dmf)]2·(dmf)2 (Ln = Sm (2), Eu (3), Gd (4), Tb (5); Fc = Fe(η5-C5H4)(η5-C5H5)), and novel [Bu4N][Ln3(μ-O2CFc)3(μO:κ2OO'-O2CFc)3(O2CFc)3(μ3-OH)]·[Bu4N]Cl (Ln = Gd (6), Tb (7)) were prepared by the reaction of [LnCl3·6H2O] (synthesis of 2-5) or LnCl3 (synthesis of 6, 7) with FcCO2H (1) in the ratio of 1 : 3. As evidenced by single crystal X-ray structure determination, in 2-5 the lanthanide ions are connected by symmetric FcCO2 units. In addition, two ferrocenylcarboxylato groups are μ-bridged to LnIII. Each LnIII ion is coordinated by nine oxygen donor atoms derived from one H2O, one dmf and three carboxylates. The latter are found in chelating κ2 and bridging μ,κ3 coordination modes. Complexes 6 and 7 assemble three LnIII cores around a central μ3-netting hydroxide and nine FcCO2 entities. A combination of κ2, μ,κ2 and μ,κ3 coordination modes results in an eight-fold coordination sphere for each metal, which is best described as bicapped trigonal prismatic. IR spectroscopy confirms the chelating and bridging motifs. Electrochemical studies of complexes 2-7via cyclic voltammetry (CV) and square-wave voltammetry (SWV) showed one redox event between E°' = 250 and 260 mV vs. FcH/FcH+ for 2-5 with all six FcCO2 redox events superimposed. Complexes 6 and 7 show a total of three events in the CV with the oxidations of the nine FcCO2 units occurring in close proximity. Deconvolution of individual redox events correlates well with the mononuclear complex [Bu4N][Gd(O2CFc)4]. UV-Vis/NIR spectroelectrochemical measurements of 7 did not reveal electron transfer between either Fc units, nor the coordinated lanthanides and resembled the absorption behavior of [Bu4N][Tb(O2CFc)4]. DFT (Density Functional Theory) calculations on the B3LYP def2-TZVP level of theory were carried out to assign the order of redox events in 6 showing that the spatial distance towards the most recent redox center, instead of the binding mode, is decisive.
Collapse
Affiliation(s)
- Ahmed Khalladi
- Technische Universität, Research Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallic Chemistry, Rosenbergstraße 6, D-09126 Chemnitz, Germany.
| | - Eduard Kovalski
- Technische Universität, Research Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallic Chemistry, Rosenbergstraße 6, D-09126 Chemnitz, Germany.
| | - Mohammad A Abdulmalic
- Technische Universität, Research Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallic Chemistry, Rosenbergstraße 6, D-09126 Chemnitz, Germany.
| | - Tobias Rüffer
- Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany
| | - Qing Yuan
- Technische Universität, Research Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallic Chemistry, Rosenbergstraße 6, D-09126 Chemnitz, Germany.
| | - H Naïli
- University of Sfax, Faculty of Sciences, Department of Chemistry, Solid State Physico-Chemistry Laboratory, PB 1171, 3000 Sfax, Tunisia
| | - Marcus Korb
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | - Heinrich Lang
- Technische Universität, Research Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallic Chemistry, Rosenbergstraße 6, D-09126 Chemnitz, Germany.
| |
Collapse
|
11
|
Ye S, Zhang W, Shen Y, Han S, Hu H, Liang Y, Lin Z, Jin Y, Lawson T, Liu Y, Cai Z. Simultaneous Imaging and Photodynamic-Enhanced Photothermal Inhibition of Cancer Cells Using a Multifunctional System Combining Indocyanine Green and Polydopamine-Preloaded Upconversion Luminescent Nanoparticles. Macromol Rapid Commun 2023; 44:e2300298. [PMID: 37548089 DOI: 10.1002/marc.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
This work introduces a novel multifunctional system called UPIPF (upconversion-polydopamine-indocyanine-polyethylene-folic) for upconversion luminescent (UCL) imaging of cancer cells using near-infrared (NIR) illumination. The system demonstrates efficient inhibition of human hepatoma (HepG2) cancer cells through a combination of NIR-triggered photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Initially, upconversion nanoparticles (UCNP) are synthesized using a simple thermal decomposition method. To improve their biocompatibility and aqueous dispersibility, polydopamine (PDA) is introduced to the UCNP via a ligand exchange technique. Indocyanine green (ICG) molecules are electrostatically attached to the surface of the UCNP-polydopamine (UCNP@PDAs) complex to enhance the PDT and PTT effects. Moreover, polyethylene glycol (PEG)-modified folic acid (FA) is incorporated into the UCNP-polydopamine-indocyanine-green (UCNP@PDA-ICGs) nanoparticles to enhance their targeting capability against cancer cells. The excellent UCL properties of these UCNP enable the final UCNP@PDA-ICG-PEG-FA nanoparticles (referred to as UPIPF) to serve as a potential candidate for efficient anticancer drug delivery, real-time imaging, and early diagnosis of cancer cells. Furthermore, the UPIPF system exhibits PDT-assisted PTT effects, providing a convenient approach for efficient cancer cell inhibition (more than 99% of cells are killed). The prepared UPIPF system shows promise for early diagnosis and simultaneous treatment of malignant cancers.
Collapse
Affiliation(s)
- Sihao Ye
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenjing Zhang
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yao Shen
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuai Han
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hai Hu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuexiang Liang
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zijian Lin
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuepeng Jin
- National Key Clinical Specialty (General Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tom Lawson
- School of Mathematical and Physical Sciences, ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhenzhai Cai
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
12
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
13
|
Zhou T, Zhang S, Zhang L, Jiang T, Wang H, Huang L, Wu H, Fan Z, Jing S. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Acta Biomater 2023; 164:496-510. [PMID: 37054962 DOI: 10.1016/j.actbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Developing a feasible way to feature longitudinal (T1) and transverse (T2) relaxation performance of contrast agents for magnetic resonance imaging (MRI) is important in cancer diagnosis and therapy. Improved accessibility to water molecule is essential for accelerating the relaxation rate of water protons around the contrast agents. Ferrocenyl compounds have reversible redox property for modulating the hydrophobicity/hydrophilicity of assemblies. Thus, they could be the candidates that can change water accessibility to the contrast agent surface. Herein, we incorporated ferrocenylseleno compound (FcSe) with Gd3+-based paramagnetic UCNPs, to obtain FNPs-Gd nanocomposites using T1-T2 MR/UCL trimodal imaging and simultaneous photo-Fenton therapy. When the surface of NaGdF4:Yb,Tm UNCPs was ligated by FcSe, the hydrogen bonding between hydrophilic selenium and surrounding water molecules accelerated their proton exchange to initially endow FNPs-Gd with high r1 relaxivity. Then, hydrogen nuclei from FcSe disrupted the homogeneity of the magnetic field around the water molecules. This facilitated T2 relaxation and resulted in enhanced r2 relaxivity. Notably, upon the near-infrared light-promoted Fenton-like reaction in the tumor microenvironment, hydrophobic ferrocene(II) of FcSe was oxidized into hydrophilic ferrocenium(III), which further increased the relaxation rate of water protons to obtain r1 = 1.90±0.12 mM-1 s-1 and r2 = 12.80±0.60 mM-1 s-1. With an ideal relaxivity ratio (r2/r1) of 6.74, FNPs-Gd exhibited high contrast potential of T1-T2 dual-mode MRI in vitro and in vivo. This work confirms that ferrocene and selenium are effective boosters that enhance the T1-T2 relaxivities of MRI contrast agents, which could provide a new strategy for multimodal imaging-guided photo-Fenton therapy of tumors. STATEMENT OF SIGNIFICANCE: T1-T2 dual-mode MRI nanoplatform with tumor-microenvironment-responsive features has been an attractive prospect. Herein, we designed redox ferrocenylseleno compound (FcSe) modified paramagnetic Gd3+-based UCNPs, to modulate T1-T2 relaxation time for multimodal imaging and H2O2-responsive photo-Fenton therapy. Selenium-hydrogen bond of FcSe with surrounding water molecules facilitated water accessibility for fast T1 relaxation. Hydrogen nucleus in FcSe perturbed the phase coherence of water molecules in an inhomogeneous magnetic field and thus accelerated T2 relaxation. In tumor microenvironment, FcSe was oxidized into hydrophilic ferrocenium via NIR light-promoted Fenton-like reaction which further increased both T1 and T2 relaxation rates; Meanwhile, the released toxic •OH performed on-demand cancer therapy. This work confirms that FcSe is an effective redox mediate for multimodal imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuyan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Hongshuai Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhining Fan
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
14
|
Zhao S, Xie H, Tang X, Lu G, Zhang Y. Oxidized dextran-crosslinked ferrocene-chitosan-PEI composite porous material integrating adsorption and degradation to malachite green. Carbohydr Polym 2023; 312:120770. [PMID: 37059526 DOI: 10.1016/j.carbpol.2023.120770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Treating wastewater containing malachite green (MG) using porous materials with both adsorption and degradation functions have become a major challenge in achieving the carbon neutrality goal. Herein by incorporating the ferrocene (Fc) group as a Fenton active center, a novel composite porous material (DFc-CS-PEI) was prepared using chitosan (CS) and polyethyleneimine (PEI) as skeletons and oxidized dextran as a crosslinker. DFc-CS-PEI not only possesses satisfactory adsorption performance to MG but also excellent degradability in the presence of a minor amount of H2O2 (3.5 mmol/L) without any additional assistance, due to high specific surface area and active Fc group. The maximum adsorption capacity is ca. 177.73 ± 3.11 mg/g, outperforming most CS-based adsorbents. The removal efficiency of MG is significantly enhanced from 20 % to 90 % as DFc-CS-PEI and H2O2 coexist, due to ·OH-dominated Fenton reaction, and remained in a wide pH range (2.0-7.0). Cl- exhibits notable suppression on the degradation of MG because of quenching effects. Note that DFc-CS-PEI has a very small iron leaching (0.2 ± 0.015 mg/L), and can be rapidly recycled by simple water-washing, without any harmful chemicals and potential second pollution. Such versatility, high stability, and green recyclability make the as-prepared DFc-CS-PEI a promising porous material for the treatment of organic wastewater.
Collapse
|
15
|
Zhong J, Hong Z, Huang S, Zhong Q, Zhang L, Zhao S, Liang H, Huang FP. A triphenylphosphine coordinated Cu(I) Fenton-like agent with ferrocene moieties for enhanced chemodynamic therapy. Dalton Trans 2022; 51:18054-18058. [PMID: 36373723 DOI: 10.1039/d2dt03088h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A triphenylphosphine coordinated Cu(I) complex of Fc-OD-Cu was rationally designed for chemodynamic therapy (CDT) of cancer. The complex was capable of generating a highly toxic hydroxyl radical (˙OH) via a Fenton-like reaction induced by Cu(I) moieties and simultaneously mediated by ferrocene moieties. As a result, the CDT efficiency of Fc-OD-Cu is higher than that of Ba-OD-Cu (without ferrocene moieties) and Fc-OD (without Cu(I) moieties).
Collapse
Affiliation(s)
- Jingjing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhaoguo Hong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Sudi Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qiongqiong Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
16
|
Wang RQ, Zhou T, Li A, Qu J, Zhang X, Zhu XF, Jing S. The design of fluorescein-ferrocene derivatives as HOCl-triggered turn-on fluorescent probes and anticancer prodrugs. Dalton Trans 2022; 51:15330-15338. [PMID: 36134906 DOI: 10.1039/d2dt02198f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overexpressed HOCl in tumors can behave as an activator for imaging-guided precision therapy. Herein, a new kind of HOCl-activated molecular platform has been developed aiming at the integration of detection, imaging, and anticancer functions. The design strategy uses a five-membered heterocyclic ring to bridge the fluorescent fluorescein part (FL) and the anticancer ferrocene part (Fc). Three derivatives, namely FL-Fc, FL-NP-Fc and FL-TEG-Fc, were designed with different grafted chains on the fluorescein mother to modulate the hydrophilic and biocompatible capacity. In these molecular platforms, the ferrocene unit serves as the fluorescence emission quencher and masked prodrug. These three could respond to HOCl with good selectivity and sensitivity, showing a turn-on fluorescence signal and anticancer efficacy. FL-TEG-Fc with the highest sensitivity (6.5 × 10-6 M) was successfully used for imaging endogenous HOCl in AGS cells, in which it presented strong toxicity IC50 = 9.5 ± 0.3 μM. The mechanistic study revealed that the five-membered heterocyclic ring of FL-TEG-Fc was broken specifically and effectively by HOCl to release strongly fluorescent fluorescein and a bioactive ferrocene derivative; the obtained ferrocene derivative further generated cytotoxic ˙OH through a Fenton-like reaction. This study provides a potential theranostic strategy against HOCl-overexpressing cancers.
Collapse
Affiliation(s)
- Rui-Qi Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Qu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xin Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiang-Feng Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
17
|
Ranjan A, Sharma D, Srivastava AK, Varma A, Magani SK, Joshi RK. Evaluation of anticancer activity of ferrocene based benzothiazole and β-ketooxothioacetal. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Liu J, Yu H, Wang L. Toward efficient removal of organic pollutants in water: A tremella-like iron containing metal-organic framework in Fenton oxidation. ENVIRONMENTAL TECHNOLOGY 2022; 43:2785-2795. [PMID: 33739227 DOI: 10.1080/09593330.2021.1903564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The treatment of wastewater containing organic pollutants has become a serious issue, and one of the advanced oxidation process, Fenton oxidation is recognized as an ideal way owing to its universality and environmental friendliness, thus efficient and economic catalysts are in great demand. Herein by incorporating Fe2+ containing compound as ligand, a tremella-like iron containing metal-organic framework (TFMOF) was synthesized with zirconium acetate and 1,1'-ferrocene-dicarboxylic acid though a facile solvothermal method. The TFMOF combined the merits of both ferrocene moiety with well dispersed Fe2+ sites in the molecular level and MOF films with large surface areas and exposed sites. And the morphology and crystal structure of TFMOF were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Moreover, employed as an effective catalyst in Fenton oxidation, over 99%, 95% and 97% of rhodamine B, methyl orange and reactive black V were rapidly degraded without the assistance of additional irradiation, and degradation conditions like pH, H2O2 and initial pollutant concentrations as well as the reaction kinetic was investigated, indicating the hydroxyl radical generated in the presence of TFMOF and H2O2 was able to degrade the pollutants into non-toxic molecular. Besides, the catalytic activity of TFMOF maintained well after three cycles. The good activity and universality of TFMOF make it a promising catalyst for the treatment of wastewater.
Collapse
Affiliation(s)
- Jiyang Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Yang G, Liu Y, Teng J, Zhao CX. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring. BIOSENSORS 2021; 11:505. [PMID: 34940262 PMCID: PMC8699184 DOI: 10.3390/bios11120505] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 05/11/2023]
Abstract
Fluorescence labelling is often used for tracking nanoparticles, providing a convenient assay for monitoring nanoparticle drug delivery. However, it is difficult to be quantitative, as many factors affect the fluorescence intensity. Förster resonance energy transfer (FRET), taking advantage of the energy transfer from a donor fluorophore to an acceptor fluorophore, provides a distance ruler to probe NP drug delivery. This article provides a review of different FRET approaches for the ratiometric monitoring of the self-assembly and formation of nanoparticles, their in vivo fate, integrity and drug release. We anticipate that the fundamental understanding gained from these ratiometric studies will offer new insights into the design of new nanoparticles with improved and better-controlled properties.
Collapse
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
| | - Jisi Teng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (G.Y.); (Y.L.); (J.T.)
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
21
|
Tunable organic particles: An efficient approach from solvent-dependent Schiff base macrocycles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
23
|
Cheng Q, Zhou T, Xia Q, Lu X, Xu H, Hu M, Jing S. Design of ferrocenylseleno-dopamine derivatives to optimize the Fenton-like reaction efficiency and antitumor efficacy. RSC Adv 2021; 11:25477-25483. [PMID: 35478891 PMCID: PMC9036967 DOI: 10.1039/d1ra03537a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
In the current study, six ferrocenylseleno-dopamine derivatives with different structural parameters were designed. Among these derivatives, F4b, containing two ferrocene units and a tertiary amine, showed in vitro anticancer activity with IC50 = 2.4 ± 0.4 μM for MGC-803 cells, and its in vivo studies suggested effective antitumor activity in mice bearing an MGC-803 tumor xenograft. Mechanistic study revealed that the cytotoxicity of these ferrocenylseleno-dopamine derivatives is mainly related to the Fenton-like reaction under physiological conditions, and the tertiary amine in F4b can facilitate the H2O2 decomposition to generate toxic ˙OH which induces apoptosis through CDK-2 inactivation.
Collapse
Affiliation(s)
- Qianya Cheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Qing Xia
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiulian Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Heng Xu
- Jiangsu Province Institute of Materia Medica, Nanjing Tech University Nanjing 211816 China
| | - Ming Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
24
|
Ma J, Mao X, Cong H, Li X, Sun J, Wang M, Wang H. A robust composite hydrogel consisting of polypyrrole and β-cyclodextrin-based supramolecular complex for the label-free amperometric immunodetection of motilin with well-defined dual signal response and high sensitivity. Biosens Bioelectron 2020; 173:112810. [PMID: 33212402 DOI: 10.1016/j.bios.2020.112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The label-free amperometric immunosensor is a simple, convenient and reliable method for the detection of diseases markers. Its performance heavily relies on the properties of the sensing substrate. In this paper, we proposed a robust composite hydrogel that consists of polypyrrole and vinyl ferrocene/mono-aldehyde β-cyclodextrin (β-CD) complex as a sensing and immobilizing substrate. Surprisingly, it was observed that the microstructure of the hybrid hydrogel could be well regulated by the feed ratio of vinylferrocene and so are the electrochemical properties. Depending on the dual electrochemical active compositions, a large loading capacity of antibodies and meanwhile the excellent conductivity, the square wave voltammetry results of the optimized immunosensor for the detection of motilin exhibited a well-defined dual signal response, with a wide linear range both from 10 pg mL-1 to 100 ng mL-1 for motilin, and an ultralow limit of detection of 6.29 pg mL-1 and 2.73 pg mL-1. More importantly, the immunosensor exhibited an especially sensitive response with the slope value as high as 31.342 and 25.751 respectively, which makes great sense in the practical diagnosis.
Collapse
Affiliation(s)
- Jiao Ma
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Xiaohui Mao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Hongxiao Cong
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Xiaoting Li
- North Automatic Control Technology Institute, Taiyuan, Shanxi, 030006, PR China
| | - Jing Sun
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Meiling Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|