1
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
2
|
Du K, Dmochowski IJ. Thermally Tunable Adsorption of Xenon in Crystalline Molecular Sorbent. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:13810-13816. [PMID: 39027347 PMCID: PMC11257604 DOI: 10.1021/acs.jpcc.3c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The thermostability of encapsulated xenon is investigated in a series of isostructural crystalline sorbents. These sorbents consist of metal-organic capsules, with the general formula of [ConFe4-nL6]4- (n = 1, 2, 3 and 4), where L2- is an organic linker with two sulfonate groups. In the crystalline sorbent, guanidinium cations form H-bond networks with the peripheral sulfonate groups in the solid state and trap xenon in the molecular cavities, which are at least 2.7 times the volume of xenon. When heated, the sorbent retains xenon up to 561 K, i.e., 396 K higher than the boiling point of xenon. Furthermore, the thermostability of trapped xenon can be modulated by varying the ratio of Co:Fe in the crystalline sorbent. Elemental analysis on a single crystal by energy dispersive X-ray spectroscopy confirms the homogeneous distribution of Co and Fe in the sorbent. Structural analyses reveal that the expansion of capsule cavity is proportional to the Co:Fe ratio, with increases of 0.049(1) Å and 6.4(8) Å3 in metal-metal distance and cavity volume, per substitution of Fe by Co center. Steric repulsion between peripheral sulfonate groups is found to render a hypothetical face-centered cubic structure of (C(NH2)3)4[Fe4L6] not accessible, which would have trapped xenon with exceptional thermostability. The stable and tunable trapping of xenon in crystalline sorbents by over-sized molecular cavities suggests a new strategy for separation and storage of xenon, through introduction of kinetic barriers, such as H-bond networks.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Xenon Induces Its Own Preferred Heterochiral Host from Exclusive Homochiral Assembly. J Am Chem Soc 2022; 144:22884-22889. [PMID: 36480928 DOI: 10.1021/jacs.2c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenon binding represents a formidable challenge, and efficient hosts remain rare. Here we report our findings that while enantiomeric bis(urea)-bis(thiourea) macrocycles form exclusive homochiral dimeric assemblies, xenon is able to overcome the narcissism and induces an otherwise-nonobservable heterochiral assembly as its preferred host. An experimental approach and fitting model were developed to obtain binding constants associated with the invisible assembly species. The determined xenon binding affinity with the heterochiral capsule reaches 1600 M-1, which is 15 times higher than that with the homochiral capsule and represents the highest record for an assembled host. The origin of the large difference in xenon affinity between the two subtle diastereotopic assemblies was revealed by single-crystal analysis. In the heterochiral capsule with S4 symmetry, the xenon atom is more tightly enclosed by van der Waals surroundings of the four thiourea groups arranged in a spherical cross-array, superior to the antiparallel array in the homochiral capsule with D2 symmetry.
Collapse
|
4
|
Vassallo G, Garello F, Aime S, Terreno E, Delli Castelli D. 31P ParaCEST: 31P MRI-CEST Imaging Based on the Formation of a Ternary Adduct between Inorganic Phosphate and Eu-DO3A. Inorg Chem 2022; 61:19663-19667. [PMID: 36445702 PMCID: PMC9946289 DOI: 10.1021/acs.inorgchem.2c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Development of the field of magnetic resonance imaging (MRI) chemical exchange saturation transfer (CEST) contrast agents is hampered by the limited sensitivity of the technique. In water, the high proton concentration allows for an enormous amplification of the exchanging proton pool. However, the 1H CEST in water implies that the number of nuclear spins of the CEST-generating species has to be in the millimolar range. The use of nuclei other than a proton allows exploitation of signals different from that of water, thus lowering the concentration of the exchanging pool as the source of the CEST effect. In this work, we report on the detection of a 31P signal from endogenous inorganic phosphate (Pifree) as the source of CEST contrast by promoting its exchange with the Pi bound to the exogenous complex 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (Pibound). The herein-reported results demonstrate that this approach can improve the detectability threshold by 3 orders of magnitude with respect to the conventional 1H CEST detection (considered per single proton). This achievement reflects the decrease of the bulk concentration of the detected signal from 111.2 M (water) to 10 mM (Pi). This method paves the way to a number of biological studies and clinically translatable applications, herein addressed with a proof-of-concept in the field of cellular imaging.
Collapse
Affiliation(s)
- Giulia Vassallo
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| | - Francesca Garello
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| | - Silvio Aime
- IRCCS
SDN SynLab, Via E. Gianturco
113, 80143Napoli, Italy
| | - Enzo Terreno
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| | - Daniela Delli Castelli
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| |
Collapse
|
5
|
Zeng Q, Guo Q, Yuan Y, Zhang L, Jiang W, Yang Y, Zhou X. Protocol for detecting substrates in living cells by targeted molecular probes through hyperpolarized 129Xe MRI. STAR Protoc 2022; 3:101499. [PMID: 35776640 PMCID: PMC9249822 DOI: 10.1016/j.xpro.2022.101499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 10/31/2022] Open
Abstract
Due to limited detection sensitivity and contrast limitation, imaging substrates with 129Xe MRI in living cells is still a challenge. Here, we present an effective protocol to detect and image substrates in human lung cancer cells A549 with hyperpolarized 129Xe MRI. This protocol was optimized for a cryptophane-based probe sensitive to biothiols and can be expanded to other Xe-based probes to detect potential biomarkers in other mammalian cells. For complete details on the use and execution of this protocol, please refer to Zeng et al. (2021). Protocol for detecting substrates in living cells with hyperpolarized 129Xe MRI Procedure for culturing and collecting cells for hyperpolarized 129Xe MRI Optimized for a cryptophane-based probe sensitive to biothiols
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
6
|
Swartjes A, White PB, Bruekers JPJ, Elemans JAAW, Nolte RJM. Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts. Nat Commun 2022; 13:1846. [PMID: 35388004 PMCID: PMC8986849 DOI: 10.1038/s41467-022-29406-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Paramagnetic metallohost systems can bind guest molecules and find application as biomimetic catalysts. Due to the presence of the paramagnetic metal center, rigorous characterization of these systems by NMR spectroscopy can be very difficult. We report here that metallohost-guest systems can be studied by using the paramagnetic relaxation enhancement (PRE) effect. Manganese(III) porphyrin cage compounds are shown through their PRE to thread and bind viologen guests, including a polymeric one. The binding constants and dethreading activation parameters are lower than those of the metal-free porphyrin cage compounds, which is proposed to be a result of charge repulsion of the trivalent metal center and dicationic viologen guest. The threading rate of the manganese(III) porphyrin cage onto the polymer is more than 10 times faster than that of the non-metallated one, which is ascribed to initial binding of the cage to the polymer chain prior to threading, and to an entron effect. Paramagnetic metallohost systems are difficult to characterize. Here the authors report that the paramagnetic relaxation enhancement effect can be used to prove by nuclear magnetic resonance experiments that Mn(III) porphyrin cage compounds can bind and thread low molecular weight and polymeric guests.
Collapse
Affiliation(s)
- Anne Swartjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Jeroen P J Bruekers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Johannes A A W Elemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Jayapaul J, Komulainen S, Zhivonitko VV, Mareš J, Giri C, Rissanen K, Lantto P, Telkki VV, Schröder L. Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics. Nat Commun 2022; 13:1708. [PMID: 35361759 PMCID: PMC8971460 DOI: 10.1038/s41467-022-29249-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Guest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetics from multiple environments. Dilute pools with ~ 104-fold lower spin numbers than reported for directly detected hyperpolarized nuclei are readily detected due to efficient guest turnover. The system is further probed by instantaneous and medium timescale perturbations. Computational modeling indicates that these signals originate likely from Xe bound to three Fe-MOP diastereomers (T, C3, S4). The symmetry thus induces steric effects with aperture size changes that tunes selective spin manipulation as it is employed in CEST MRI agents and, potentially, impacts other processes occurring on the millisecond time scale.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | | | | | - Jiří Mareš
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology (MIPT), University of Oulu, 90014, Oulu, Finland
| | - Chandan Giri
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Perttu Lantto
- NMR Research Unit, University of Oulu, 90014, Oulu, Finland.
| | | | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
McConnell AJ. Metallosupramolecular cages: from design principles and characterisation techniques to applications. Chem Soc Rev 2022; 51:2957-2971. [PMID: 35356956 DOI: 10.1039/d1cs01143j] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although metallosupramolecular cages are self-assembled from seemingly simple building blocks, metal ions and organic ligands, architectures of increasingly large size and complexity are accessible and exploited in applications from catalysis to the stabilisation of reactive species. This Tutorial Review gives an introduction to the principles for designing metallosupramolecular cages and highlights advances in the design of large and lower symmetry cages. The characterisation and identification of cages relies on a number of complementary techniques with NMR spectroscopy, mass spectrometry, X-ray crystallography and computational methods being the focus of this review. Finally, examples of cages are discussed where these design principles and characterisation techniques are put into practice for an application or function of the cage.
Collapse
Affiliation(s)
- Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany.
| |
Collapse
|
9
|
Indris S, Bredow T, Schwarz B, Eichhöfer A. Paramagnetic 7Li NMR Shifts and Magnetic Properties of Divalent Transition Metal Silylamide Ate Complexes [LiM{N(SiMe 3) 2} 3] (M 2+ = Mn, Fe, Co). Inorg Chem 2021; 61:554-567. [PMID: 34931842 DOI: 10.1021/acs.inorgchem.1c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7Li NMR shifts and magnetic properties have been determined for three so-called ate complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co; e.g., named lithium-tris(bis(trimethylsilylamide))-manganate(II) in accordance with a formally negative charge assigned to the complex fragment [M{N(SiMe3)2}3]-, which comprises the transition metal). They are formed by addition reactions of LiN(SiMe3)2 and [M{N(SiMe3)2}2] and stabilized by Lewis base/Lewis acid interactions. The results are compared to those of the related "ion-separated" complexes [Li(15-crown-5)][M{N(SiMe3)2}3]. The ate complexes with the lithium atoms connected to the 3d metal atoms manganese, iron, or cobalt via μ2 nitrogen bridges reveal strong 7Li NMR paramagnetic shifts of about -75, 125, and 171 ppm, respectively, whereas the shifts for the lithium ions coordinated by the 15-crown-5 ether are close to zero. The observed trends of the 7Li NMR shifts are confirmed by density-functional theory calculations. The magnetic dc and ac properties display distinct differences for the six compounds under investigation. Both manganese compounds, [LiMn{N(SiMe3)2}3] and [Li(15-crown-5)][Mn{N(SiMe3)2}3], display almost pure and ideal spin-only paramagnetic behavior of a 3d5 high-spin complex. In this respect slightly unexpected, both complexes show slow relaxation behavior at low temperatures under applied dc fields, which is especially pronounced for the ate complex [LiMn{N(SiMe3)2}3]. Dc magnetic properties of the iron complexes reveal moderate g-factor anisotropies with small values of the axial magnetic anisotropy parameter D and a larger E (transversal anisotropy). Both complexes display at low temperatures and, under external dc fields of up to 5000 Oe, only weak ac signals with no maxima in the frequency range from 1 to 1500 s-1. In contrast, the two cobalt complexes display strong g-factor anisotropies with large values of D and E. In addition, in both cases, the ac measurements at low temperatures and applied dc fields reveal two, in terms of their frequency range, well separated relaxation processes with maxima lying for the most part outside of the measurement range between 1 and 1500 s-1.
Collapse
Affiliation(s)
- Sylvio Indris
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Eichhöfer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Zeng Q, Guo Q, Yuan Y, Wang B, Sui M, Lou X, Bouchard LS, Zhou X. Ultrasensitive molecular building block for biothiol NMR detection at picomolar concentrations. iScience 2021; 24:103515. [PMID: 34934931 PMCID: PMC8661548 DOI: 10.1016/j.isci.2021.103515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides structural and functional information, but it did not probe chemistry. Chemical information could help improve specificity of detection. Herein, we introduce a general method based on a modular design to construct a molecular building block Xe probe to help image intracellular biothiols (glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)), the abnormal content of which is related to various diseases. This molecular building block possesses a high signal-to-noise ratio and no background signal effects. Its detection threshold was 100 pM, which enabled detection of intracellular biothiols in live cells. The construction strategy can be easily extended to the detection of any other biomolecule or biomarker. This modular design strategy promotes efficiency of development of low-cost multifunctional probes that can be combined with other readout parameters, such as optical readouts, to complement 129Xe MRI to usher in new capabilities for molecular imaging.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Meiju Sui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Louis-S. Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California, Los Angeles 90095, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
12
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Yang Y, Zhang Y, Wang B, Guo Q, Yuan Y, Jiang W, Shi L, Yang M, Chen S, Lou X, Zhou X. Coloring ultrasensitive MRI with tunable metal-organic frameworks. Chem Sci 2021; 12:4300-4308. [PMID: 34163694 PMCID: PMC8179523 DOI: 10.1039/d0sc06969h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As one of the most important imaging modalities, magnetic resonance imaging (MRI) still faces relatively low sensitivity to monitor low-abundance molecules. A newly developed technology, hyperpolarized 129Xe magnetic resonance imaging (MRI), can boost the signal sensitivity to over 10 000-fold compared with that under conventional MRI conditions, and this technique is referred to as ultrasensitive MRI. However, there are few methods to visualize complex mixtures in this field due to the difficulty in achieving favorable “cages” to capture the signal source, namely, 129Xe atoms. Here, we proposed metal–organic frameworks (MOFs) as tunable nanoporous hosts to provide suitable cavities for xenon. Due to the widely dispersed spectroscopic signals, 129Xe in different MOFs was easily visualized by assigning each chemical shift to a specific color. The results illustrated that the pore size determined the exchange rate, and the geometric structure and elemental composition influenced the local charge experienced by xenon. We confirmed that a complex mixture was first differentiated by specific colors in ultrasensitive MRI. The introduction of MOFs helps to overcome long-standing obstacles in ultrasensitive, multiplexed MRI. Metal organic frameworks with tunable pore structures are able to provide varied chemical environments for hyperpolarized 129Xe atom hosting, which results in distinguishing magnetic resonance signals, and stains ultra-sensitive magnetic resonance imaging (MRI) with diverse colors.![]()
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital Beijing 100039 China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics Wuhan 430071 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|