1
|
Chakkamalayath J, Kamat PV. Demystifying Triplet-Triplet Annihilation Mechanism in the CsPbI 3-Rubrene-DBP Upconversion System. J Am Chem Soc 2024; 146:18095-18103. [PMID: 38914006 DOI: 10.1021/jacs.4c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A triplet-triplet annihilation-based upconversion (TTA-UC) system, employing a multichromophore assembly, is convenient to harvest low-energy photons for light energy conversion and optoelectronic applications. The primary donor in the TTA-UC system, typically a low-bandgap semiconductor, captures the low-energy photons and transfers triplet energy to an annihilator dye molecule, which in turn generates a high-energy singlet excited state via T-T annihilation. We have now succeeded in revealing kinetic and mechanistic details of multistep energy transfer processes in the CsPbI3-rubrene-perylene derivative (DBP) films by analyzing time-resolved emission and absorption measurements. The initial triplet energy transfer between CsPbI3 and rubrene occurs with an efficiency of 70% and a rate constant of 9 × 108 s-1. The rubrene triplets undergo T-T annihilation via simple second-order kinetics to form an excited singlet state exhibiting a delayed emission up to 10 μs, which is significantly greater than the intrinsic lifetime of 15 ns. The emitter DBP (a perylene derivative) captures the singlet energy quite effectively and delivers the upconverted emission in sync with the delayed emission of rubrene. The quadratic dependence of DBP emission on the excitation light intensity shows the importance of the T-T annihilation process in dictating the overall upconversion process. The kinetic parameters evaluated in this study, which divulge the critical steps dictating energy transfer in a TTA-UC system, should aid in the design of new light harvesting assemblies.
Collapse
Affiliation(s)
- Jishnudas Chakkamalayath
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Zhang H, Chan MHY, Lam J, Chen Z, Leung MY, Wong EKH, Wu L, Yam VWW. Supramolecular assembly of amphiphilic platinum(ii) Schiff base complexes: diverse spectroscopic changes and nanostructures through rational molecular design and solvent control. Chem Sci 2024; 15:8545-8556. [PMID: 38846386 PMCID: PMC11151868 DOI: 10.1039/d3sc06094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
A new class of amphiphilic tetradentate platinum(ii) Schiff base complexes has been designed and synthesized. The self-assembly properties by exploiting the potential Pt⋯Pt interactions of amphiphilic platinum(ii) Schiff base complexes in the solution state have been systematically investigated. The presence of Pt⋯Pt interactions has further been supported by computational studies and non-covalent interaction (NCI) analysis of the dimer of the complex. The extent of the non-covalent Pt⋯Pt and π-π interactions could be regulated by a variation of the solvent compositions and the hydrophobicity of the complexes, which is accompanied by attractive spectroscopic and luminescence changes and leads to diverse morphological transformations. The present work represents a rare example of demonstration of directed cooperative assembly of amphiphilic platinum(ii) Schiff base complexes by intermolecular Pt⋯Pt interactions in solution with an in-depth mechanistic investigation, providing guiding principles for the construction of supramolecular structures with desirable properties using platinum(ii) Schiff base building blocks.
Collapse
Affiliation(s)
- Huilan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jonathan Lam
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Eric Ka-Ho Wong
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
3
|
Bertrams MS, Hermainski K, Mörsdorf JM, Ballmann J, Kerzig C. Triplet quenching pathway control with molecular dyads enables the identification of a highly oxidizing annihilator class. Chem Sci 2023; 14:8583-8591. [PMID: 37592982 PMCID: PMC10430750 DOI: 10.1039/d3sc01725g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Metal complex - arene dyads typically act as more potent triplet energy donors compared to their parent metal complexes, which is frequently exploited for increasing the efficiencies of energy transfer applications. Using unexplored dicationic phosphonium-bridged ladder stilbenes (P-X2+) as quenchers, we exclusively observed photoinduced electron transfer photochemistry with commercial organic photosensitizers and photoactive metal complexes. In contrast, the corresponding pyrene dyads of the tested ruthenium complexes with the very same metal complex units efficiently sensitize the P-X2+ triplets. The long-lived and comparatively redox-inert pyrene donor triplet in the dyads thus provides an efficient access to acceptor triplet states that are otherwise very tricky to obtain. This dyad-enabled control over the quenching pathway allowed us to explore the P-X2+ photochemistry in detail using laser flash photolysis. The P-X2+ triplet undergoes annihilation producing the corresponding excited singlet, which is an extremely strong oxidant (+2.3 V vs. NHE) as demonstrated by halide quenching experiments. This behavior was observed for three P2+ derivatives allowing us to add a novel basic structure to the very limited number of annihilators for sensitized triplet-triplet annihilation in neat water.
Collapse
Affiliation(s)
- Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Katharina Hermainski
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
4
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
5
|
Zhang X, Sukhanov AA, Liu X, Taddei M, Zhao J, Harriman A, Voronkova VK, Wan Y, Dick B, Di Donato M. Origin of intersystem crossing in highly distorted organic molecules: a case study with red light-absorbing N, N, O, O-boron-chelated Bodipys. Chem Sci 2023; 14:5014-5027. [PMID: 37206394 PMCID: PMC10189861 DOI: 10.1039/d3sc00854a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
To explore the relationship between the twisted π-conjugation framework of aromatic chromophores and the efficacy of intersystem crossing (ISC), we have studied a N,N,O,O-boron-chelated Bodipy derivative possessing a severely distorted molecular structure. Surprisingly, this chromophore is highly fluorescent, showing inefficient ISC (singlet oxygen quantum yield, ΦΔ = 12%). These features differ from those of helical aromatic hydrocarbons, where the twisted framework promotes ISC. We attribute the inefficient ISC to a large singlet-triplet energy gap (ΔES1/T1 = 0.61 eV). This postulate is tested by critical examination of a distorted Bodipy having an anthryl unit at the meso-position, for which ΦΔ is increased to 40%. The improved ISC yield is rationalized by the presence of a T2 state, localized on the anthryl unit, with energy close to that of the S1 state. The electron spin polarization phase pattern of the triplet state is (e, e, e, a, a, a), with the Tz sublevel of the T1 state overpopulated. The small zero-field splitting D parameter (-1470 MHz) indicates that the electron spin density is delocalized over the twisted framework. It is concluded that twisting of π-conjugation framework does not necessarily induce ISC, but S1/Tn energy matching may be a generic feature for increasing ISC for a new-generation of heavy atom-free triplet photosensitizers.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Xi Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg D-93053 Regensburg Germany
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM, Istituto di Chimica dei Complessi OrganoMetallici Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
6
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Fitzgerald SA, Xiao X, Zhao J, Horton PN, Coles SJ, Knighton RC, Ward BD, Pope SJA. Organometallic Platinum(II) Photosensitisers that Demonstrate Ligand-Modulated Triplet-Triplet Annihilation Energy Upconversion Efficiencies. Chemistry 2023; 29:e202203241. [PMID: 36394514 PMCID: PMC10107691 DOI: 10.1002/chem.202203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1 cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.
Collapse
Affiliation(s)
| | - Xiao Xiao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Peter N. Horton
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Simon J. Coles
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | | | - Benjamin D. Ward
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Simon J. A. Pope
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
8
|
Małecka M, Szlapa-Kula A, Maroń AM, Ledwon P, Siwy M, Schab-Balcerzak E, Sulowska K, Maćkowski S, Erfurt K, Machura B. Impact of the Anthryl Linking Mode on the Photophysics and Excited-State Dynamics of Re(I) Complexes [ReCl(CO) 3(4′-An-terpy-κ 2N)]. Inorg Chem 2022; 61:15070-15084. [PMID: 36101987 PMCID: PMC9516691 DOI: 10.1021/acs.inorgchem.2c02160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Rhenium(I) complexes with 2,2′:6′,2″-terpyridines
(terpy) substituted with 9-anthryl (1) and 2-anthryl
(2) were synthesized, and the impact of the anthryl linking
mode on the ground- and excited-state properties of resulting complexes
[ReCl(CO)3(4′-An-terpy-κ2N)] (An—anthryl)
was investigated using a combination of steady-state and time-resolved
optical techniques accompanied by theoretical calculations. Different
attachment positions of anthracene modify the overlap between the
molecular orbitals and thus the electronic coupling of the anthracene
and {ReCl(CO)3(terpy-κ2N)} chromophores.
Following the femtosecond transient absorption, the lowest triplet
excited state of both complexes was found to be localized on the anthracene
chromophore. The striking difference between 1 and 2 concerns the triplet-state formation dynamics. A more planar
geometry of 2-anthryl-terpy (2), and thus better electronic
communication between the anthracene and {ReCl(CO)3(terpy-κ2N)} chromophores, facilitates the formation of the 3An triplet state. In steady-state photoluminescence spectra, the
population ratio of 3MLCT and 3An was found
to be dependent not only on the anthryl linking mode but also on solvent
polarity and excitation wavelengths. In dimethyl sulfoxide (DMSO),
compounds 1 and 2 excited with λexc > 410 nm show both 3MLCT and 3An
emissions, which are rarely observed. Additionally, the abilities
of the designed complexes for 1O2 generation
and light emission under the external voltage were preliminary examined. The impact of the anthryl linking mode
on the ground- and
excited-state properties of [ReCl(CO)3(4′-An-terpy-κ2N)] with 2,2′:6′,2″-terpyridines (terpy)
substituted with 9-anthryl (1) and 2-anthryl (2) was thoroughly investigated. Different attachment positions of
anthracene were evidenced to modify the overlap between the molecular
orbitals and electronic coupling of the anthracene and {ReCl(CO)3(terpy-κ2N)} chromophores and thus the optical
properties of the resulting complexes. The striking difference between 1 and 2 was demonstrated in the triplet-state
formation dynamics.
Collapse
Affiliation(s)
- Magdalena Małecka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Anna M. Maroń
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Street, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Street, 87-100 Torun, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| |
Collapse
|
9
|
Schiff base-type Cu(I) complexes containing naphthylpyridyl-methanimine ligands featuring higher light-absorption capability: Synthesis, structures, and photophysical properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Su H, Hu L, Zhu S, Lu J, Hu J, Liu R, Zhu H. Transition metal complexes with strong and long-lived excited state absorption: from molecular design to optical power limiting behavior. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Transition metal complexes (TMCs) with strong and long-lived excited state absorption (ESA) usually exhibit high-performance optical power limiting (OPL) response. Several techniques, such as transmission vs. incident fluence curves and Z-scan have been widely used to assess the OPL performance of typical TMCs. The OPL performance of TMCs is highly molecular structure-dependent. Special emphasis is placed on the structure-OPL response relationships of Pt(II), Ir(III), Ru(II), and other metal complexes. This review concludes with perspectives on the current status of OPL field, as well as opportunities that lie just beyond its frontier.
Collapse
Affiliation(s)
- Huan Su
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Lai Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Senqiang Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Jiapeng Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Jinyang Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Rui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing , China
| |
Collapse
|
11
|
Chen X, Sukhanov AA, Yan Y, Bese D, Bese C, Zhao J, Voronkova VK, Barbon A, Yaglioglu HG. Long‐Lived Charge‐Transfer State in Spiro Compact Electron Donor–Acceptor Dyads Based on Pyromellitimide‐Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization. Angew Chem Int Ed Engl 2022; 61:e202203758. [PMID: 35384206 PMCID: PMC9543469 DOI: 10.1002/anie.202203758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Damla Bese
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| | - Cagri Bese
- Department of Physics Engineering Hacettepe University 06800 Beytepe Ankara Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Halime Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| |
Collapse
|
12
|
Magaela NB, Makola LC, Managa M, Nyokong T. Photodynamic activity of novel cationic porphyrins conjugated to graphene quantum dots against Staphylococcus aureus. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel 5-(pyridyl)-10-15-20-tris(4-bromophenyl) porphyrin (complex 1), indium metal derivative (complex 2), and quaternized derivative (complex 3) were synthesized and conjugated to graphene quantum dots (GQDs). The conjugation of the porphyrins to GQDs was through [Formula: see text]-[Formula: see text] stacking. Herein, the [Formula: see text]-[Formula: see text] stacking approach was used to avoid covalent conjugation which might compromise the intrinsic chemical and physical properties. The photodynamic activities of the proposed nanomaterials were assessed towards Staphylococcus aureus cell obliteration. The photophysical properties of the prepared complexes were also studied prior to the application. Moreover, a decrease in fluorescence lifetimes was observed upon metalation of complex 1. As anticipated, singlet oxygen quantum yield ([Formula: see text] increased notably upon heavy metal (indium) insertion and upon composite formation. Antimicrobial photodynamic therapy comparative studies were done on quaternized and unquaternized indium porphyrins conjugated to GQDs. Complex 3-GQDs exhibited the highest antibacterial activities compared to other complexes, and this was attributed to the high [Formula: see text] which plays an imperative role in photodynamic therapy applications.
Collapse
Affiliation(s)
- N. Bridged Magaela
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Lekgowa C. Makola
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
13
|
Chen X, Sukhanov AA, Yan Y, Bese D, Bese C, Zhao J, Voronkova VK, Barbon A, Yaglioglu HG. Long‐Lived Charge‐Transfer State in Spiro Compact Electron Donor–Acceptor Dyads Based on Pyromellitimide‐Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Damla Bese
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| | - Cagri Bese
- Department of Physics Engineering Hacettepe University 06800 Beytepe Ankara Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Halime Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| |
Collapse
|
14
|
Wei Y, Li Y, Li Z, Xu X, Cao X, Zhou X, Yang C. Efficient Triplet-Triplet Annihilation Upconversion in Solution and Hydrogel Enabled by an S-T Absorption Os(II) Complex Dyad with an Elongated Triplet Lifetime. Inorg Chem 2021; 60:19001-19008. [PMID: 34886665 DOI: 10.1021/acs.inorgchem.1c02846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new Os(II) complex dyad featuring direct singlet-to-triplet (S-T) absorption and intramolecular triplet energy transfer (ITET) with lifetime up to 7.0 μs was designed to enhance triplet energy transfer efficiency during triplet-triplet annihilation upconversion (TTA-UC). By pairing with 9,10-bis(phenylethynyl)anthracene (BPEA) as a triplet acceptor, intense upconverted green emission in deaerated solution was observed with unprecedented TTA-UC emission efficiency up to 26.3% (with a theoretical maximum efficiency of 100%) under photoexcitation in the first biological transparency window (650-900 nm). Meanwhile, a 7.1% TTA-UC emission efficiency was acquired in an air-saturated hydrogel containing the photosensitizer and a newly designed hydrophilic BPEA derivative. This ITET mechanism would inspire further development of a highly efficient TTA-UC system for biological fields and renewable energy production.
Collapse
Affiliation(s)
- Yaxiong Wei
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zefeng Li
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinsheng Xu
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Hu M, Sukhanov AA, Zhang X, Elmali A, Zhao J, Ji S, Karatay A, Voronkova VK. Spiro Rhodamine-Perylene Compact Electron Donor-Acceptor Dyads: Conformation Restriction, Charge Separation, and Spin-Orbit Charge Transfer Intersystem Crossing. J Phys Chem B 2021; 125:4187-4203. [PMID: 33876644 DOI: 10.1021/acs.jpcb.1c02071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spiro rhodamine (Rho)-perylene (Pery) electron donor-acceptor dyads were prepared to study the spin-orbit charge transfer intersystem crossing (SOCT-ISC) in these rigid and sterically congested molecular systems. The electron-donor Rho (lactam form) moiety is attached via the N-C bond to the electron acceptor at either 1- or 3-position of the Pery moiety (Rho-Pery-1 and Rho-Pery-3). Severe torsion of the Pery moiety in Rho-Pery-1 was observed. The fluorescence of the two dyads is significantly quenched in polar solvents, and the singlet oxygen quantum yields (ΦΔ) are strongly dependent on solvent polarity (4-36%). Femtosecond transient absorption spectra demonstrate that charge separation (CS) takes 0.51 ps in Rho-Pery-1 and 5.75 ps in Rho-Pery-3, and the charge recombination (CR)-induced ISC is slow (>3 ns). Nanosecond transient absorption spectra indicate that the formation of triplet states via SOCT-ISC takes 24-75 ns for Rho-Pery-1 and 6-15 ns for Rho-Pery-3, and the distorted π-framework of the Pery moiety results in a shorter triplet lifetime of 19.9 vs 291 μs for the planar analogue. Time-resolved electron paramagnetic resonance spectroscopy confirms the SOCT-ISC mechanism.
Collapse
Affiliation(s)
- Mengyu Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Andrei A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Beşevler, 06100 Ankara, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Beşevler, 06100 Ankara, Turkey
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
| |
Collapse
|
16
|
Bassan E, Gualandi A, Cozzi PG, Ceroni P. Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chem Sci 2021; 12:6607-6628. [PMID: 34040736 PMCID: PMC8132938 DOI: 10.1039/d1sc00732g] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 12/22/2022] Open
Abstract
BODIPYs are renowned fluorescent dyes with strong and tunable absorption in the visible region, high thermal and photo-stability and exceptional fluorescence quantum yields. Transition metal complexes are the most commonly used triplet photosensitisers, but, recently, the use of organic dyes has emerged as a viable and more sustainable alternative. By proper design, BODIPY dyes have been turned from highly fluorescent labels into efficient triplet photosensitizers with strong absorption in the visible region (from green to orange). In this perspective, we report three design strategies: (i) halogenation of the dye skeleton, (ii) donor-acceptor dyads and (iii) BODIPY dimers. We compare pros and cons of these approaches in terms of optical and electrochemical properties and synthetic viability. The potential applications of these systems span from energy conversion to medicine and key examples are presented.
Collapse
Affiliation(s)
- Elena Bassan
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| | - Andrea Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| |
Collapse
|