1
|
Li G, Gu Y, Ren R, Li S, Zhu H, Xue D, Kong X, Zheng Z, Liu N, Li B, Zhang J. Efficient reduction of CO 2 and inhibition of hydrogen precipitation by polyoxometalate photocatalyst modified with the metal Mn. NANOSCALE 2024; 16:12550-12558. [PMID: 38884386 DOI: 10.1039/d4nr00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Photocatalytic reduction of CO2 to chemical fuels is attractive for solving both the greenhouse effect and the energy crisis, but the key challenge is to design and synthesize photocatalysts with remarkable performance under visible light irradiation. Efficient catalytic carbon dioxide reduction (CO2RR) with light is considered a promising sustainable and clean approach to solve environmental problems. Herein, we found a new photocatalyst ([Mn(en)2]6[V12B18O54(OH)6]) (abbreviated as Mn6V12) based on the modifiability of polyoxometalates, in which Mn acts as a modifying unit to efficiently reduce CO2 to CO and effectively inhibit the hydrogen precipitation reaction. This Mn modified polyoxometalate catalyst has a maximum CO generation rate of 4625.0 μmol g-1 h-1 and a maximum H2 generation rate of 499.6 μmol g-1 h-1, with a selectivity of 90.3% for CO generation and 9.7% for H2 generation. This polyoxometalate photocatalyst can effectively reduce CO and inhibit the hydrogen precipitation reaction. It provides a new idea for the efficient photocatalytic carbon dioxide reduction (CO2RR) with polyoxometalate catalysts.
Collapse
Affiliation(s)
- Guifen Li
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yulan Gu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Rui Ren
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Sitan Li
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Houen Zhu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Dongdong Xue
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Xiangyi Kong
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Ziyi Zheng
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Nuo Liu
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| | - Jiangwei Zhang
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, P. R. China.
- Ordos Laboratory, Ordos 017000, P. R. China
| |
Collapse
|
2
|
Liu XH, Zhang LB, Wang JL, Xu N, Zhang XY, Chang ZH, Wang XL. Two {Cu I[P 4Mo 6] 2}-Based Coordination Polymers Incorporating In Situ Converted Tetrapyridyl Ligands for Trace Analysis of Nitrofuran Antibiotics. Inorg Chem 2024; 63:9058-9065. [PMID: 38720438 DOI: 10.1021/acs.inorgchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Nitrofurans are important synthetic broad-spectrum antibacterial drugs with the basic structure of 5-nitrofuran. Due to their toxicity, it is essential to develop a sensitive sensor with strong anti-interference capabilities for their detection. In this work, two {P4Mo6O31}12--based compounds, [H4(HPTTP)]2{CuI[Mo12O24(OH)6(PO4)3(HPO4)(H2PO4)4]}·xH2O (x = 13 for (1), 7 for (2); HPTTP = 4,4',4″,4‴-(1H-pyrrole-2,3,4,5-tetrayl)tetrapyridine), exhibiting similar coordination but distinct stacking modes. Both compounds were synthesized and used for the electrochemical detection of nitrofuran antibiotics. The tetrapyridine-based ligand was generated in situ during assembly, and its potential mechanism was discussed. Composite electrode materials, formed by mixing graphite powder with compounds 1-2 and physically grinding them, proved to be highly effective in the electrochemical trace detection of furazolidone (FZD) and furaltadone hydrochloride (FTD·HCl) under optimal conditions. Besides, the possible electrochemical detection mechanisms of two nitro-antibiotics were studied.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Li-Bo Zhang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Jin-Ling Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Na Xu
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yan Zhang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Zhi-Han Chang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiu-Li Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
3
|
He JY, Bi HX, Liu YQ, Guo MS, An WT, Ma YY, Han ZG. Bridging Component Strategy in Phosphomolybdate-Based Sensors for Electrochemical Determination of Trace Cr(VI). Inorg Chem 2024; 63:842-851. [PMID: 38100035 DOI: 10.1021/acs.inorgchem.3c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(μ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(μ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 μA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.
Collapse
Affiliation(s)
- Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yu-Qing Liu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Meng-Si Guo
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Wen-Ting An
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
4
|
Chen Y, Chang Z, Zhang Y, Chen K, Wang X. "Tree"-like Multidentate Ligand-Assisted Synthesis of Polymolybdate-Based Architectures with Multinuclear Metal Clusters: Supercapacitor and Electrochemical Sensing Performances. Inorg Chem 2022; 61:16020-16027. [PMID: 36177812 DOI: 10.1021/acs.inorgchem.2c02424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, aiming for constructing multinuclear metal cluster-modified polymolybdate-based architectures with novel conformation, the "tree"-like multidentate ligand 5-(3-pyridyl)-1H-tetrazole) (3-ptzH) is introduced into the polymolybdate reaction system. Three new polymolybdate-based architectures with various multinuclear metal clusters, H4[Cu6(μ3-OH)2(3-ptz)6(γ-Mo8O28) (H2O)2]·2H2O (BOHU-1), H2[Ag4(3-ptz)2(Mo8O26)] (BOHU-2), and H4[Cu5(3-ptzH)2(3-ptz)2(MnMo9O32)2(H2O)4] (BOHU-3) (BOHU = Bohai University), have been prepared via the hydrothermal method and structurally characterized. In BOHU-1, a kind of pentanuclear copper cluster unit: [Cu5(μ3-OH)2(3-ptz)6]2+ is formed, which connects to construct a one-dimensional (1D) cluster-based chain. The 1D chains are extended to a two-dimensional (2D) layer via the Cu ions, which are further linked by the 4-connected [γ-Mo8O28]8- anions to build a three-dimensional (3D) framework. In BOHU-2, when a AgI ion was used as the central metal, the 3-ptz adopts different coordination modes to link the Ag ions, forming hexanuclear [Ag6(3-ptz)4]2+ cluster and finally 1D chains. These 1D cluster-based chains are connected by the 6-connected [γ-Mo8O26]4- anions to establish a 2D layer, which is further extended by [Mo8O26]n4n- 1D chains to a 3D framework. For BOHU-3, the chiral [MnMo9O32]6- anions are introduced and coordinated with the Cu ions to build left- and right-handed 1D chains, which are connected via the [Cu3(3-ptz)4]2+ cluster to form a 1D ladder-like chain. The effects of 3-ptz on the formation of multinuclear clusters, as well as the metals and polymolybdates on the multinuclear clusters and final structures of BOHU-1∼3, are discussed. The electrochemical performances of BOHU-1∼3 as electrode materials for supercapacitors and electrochemical sensors are investigated.
Collapse
Affiliation(s)
- Yongzhen Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Zhihan Chang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yuchen Zhang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Keke Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
5
|
Fan YH, Du M, Li YX, Zhu WJ, Pang JY, Bai Y, Dang DB. Construction of Water-Stable Rare-Earth Organic Frameworks with Ambient High Proton Conductivity Based on Zirconium Sandwiched Heteropolytungstate. Inorg Chem 2022; 61:13829-13835. [PMID: 35998378 DOI: 10.1021/acs.inorgchem.2c01664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water-stable proton-conducting materials owning excellent performances at ambient temperatures are currently one of the crucial challenges. Herein, four water-stable three-dimensional polyoxometalate-based rare-earth organic frameworks have been successfully synthesized and formulated as H{Ln4(L)2(H2O)21[Zr3(OH)3(PW9O34)2]}·15H2O (1-3) (Ln = La (1), Ce (2), Pr (3); L = 3,5-pyridine dicarboxylic acid), which are the first examples of MOFs constructed by a zirconium sandwiched polyoxoanion. There are abundant coordinated water molecules functionalizing the PrIII centers, and simultaneously, plenty of lattice water molecules are fitted into the channel of the framework. A continuous H-bonding network is found between the architectures and plays an important role in stabilizing the structure. Benefiting from the consecutive H-bonding networks, compounds 1-3 showed high proton conductivities at ambient temperature (up to 1.05 × 10-3 S·cm-1 under 98% RH) by a synergistic effect of the combined components.
Collapse
Affiliation(s)
- Yan-Hua Fan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| | - Ming Du
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| | - Ya-Xin Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| | - Wen-Jie Zhu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| | - Jing-Yu Pang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| | - Dong-Bin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
6
|
Three Keggin POMs-based coordination polymers constructed by linear N-heterocyclic ligand for proton conduction, photocatalytic activity and magnetic property. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Yang JB, Pan JH, Zhu YH, Wang JL, Mei H, Xu Y. Two 1D Anderson-Type Polyoxometalate-Based Metal-Organic Complexes as Bifunctional Heterogeneous Catalysts for CO 2 Photoreduction and Sulfur Oxidation. Inorg Chem 2022; 61:11775-11786. [PMID: 35858285 DOI: 10.1021/acs.inorgchem.2c01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfur oxides from the combustion of petrol and excessive emissions of carbon dioxide (CO2) are currently the main causes of environmental pollution. Considerable interest has been paid to solving the challenge, and catalytic reactions seem to be the desired choice. Due to the high density of Lewis acid active sites, polyoxometalates are considered to be the ideal choice for these catalytic reactions. Herein, two captivating polyoxometalate-based metal-organic complexes, formulated as [Co(H2O)2DABT]2[CrMo6(OH)5O19] ({Co-CrMo6}) and [Zn(H2O)2DABT]2[CrMo6(OH)5O19] ({Zn-CrMo6}) (DABT = 3,3'-diamino-5,5'-bis(1H-1,2,4-triazole)) were successfully obtained under hydrothermal conditions. The structural analysis demonstrates that {Co-CrMo6} and {Zn-CrMo6} are isostructural with two different transition metal (Co/Zn) ions based on quadridentate Anderson-type [CrMo6(OH)5O19]4- polyanions. A fan-shaped unit of {Co-CrMo6}/{Zn-CrMo6} is linked to generate a one-dimensional (1D) ladder-like structure. Intriguingly, benefitting from rich Co centers with a suitable energy band structure, {Co-CrMo6} displays better photocatalytic activity than {Zn-CrMo6} for converting CO2 into CO, endowing the CO formation of 1935.3 μmol g-1 h-1 with high selectivity. Meanwhile, {Co-CrMo6} also exhibits a satisfactory removal rate of 99% for oxidizing dibenzothiophene at 50 °C, which suggests that {Co-CrMo6} may be utilized as a potential dual functional material with immense prospects in photocatalytic CO2 reduction and sulfur oxidation for the first time.
Collapse
Affiliation(s)
- Jian-Bo Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jia-Hang Pan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yin-Hua Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Li C, Jiang HY, Wang JL, Kang RK, Mei H, Xu Y. An isolated doughnut-like molybdenum(V) cobalto-phosphate cluster exhibiting excellent photocatalytic performance for carbon dioxide conversion. Dalton Trans 2022; 51:9616-9621. [PMID: 35695846 DOI: 10.1039/d2dt01276f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An isolated doughnut-like molybdenum(V) cobalto-phosphate cluster with the formula (C11NH10)2{[Co(H2O)6]@[H29Co16Mo16(H2O)16(PO4)24O36]}(H2PO4)·25H2O has been successfully synthesized by a hydrothermal method. Single crystal X ray diffraction analysis shows that four {Co4O60} tetramers and eight {Mo2O10} dimers are linked by oxygen atoms and phosphate groups to construct a doughnut-type structure for [Co@{Co16Mo16}], in which one [CoII(H2O)6]2+ octahedron is enclosed. More importantly, [Co@{Co16Mo16}] exhibits promising photocatalytic performance for CO2 reduction with the CO formation rate of 6764.3 μmol g-1 h-1 and the selectivity of 96.89%. In addition, the cycling test indicated that [Co@{Co16Mo16}] can be reused for at least four cycles without significant loss of catalytic activity. The result of this work may provide new insight for the synthesis of highly efficient POM-based photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Cheng Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Heng-Yu Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| |
Collapse
|
9
|
Hao J, Geng L, Zheng J, Wei J, Zhang L, Feng R, Zhao J, Li Q, Pang J, Bu XH. Ligand Induced Double-Chair Conformation Ln 12 Nanoclusters Showing Multifunctional Magnetic and Proton Conductive Properties. Inorg Chem 2022; 61:3690-3696. [PMID: 35175767 DOI: 10.1021/acs.inorgchem.1c03866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many methods have been utilized to adjust the size of superatomic metal nanoclusters, while tuning the geometric conformations of specific nanoclusters is rare. Here, we demonstrate that conformation variation can be realized by slightly modifying the ligand under maintaining the nuclei number of metal atoms. A series of novel "double-chair" conformation Ln12 (Ln = Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)) clusters were generated by replacing 3-formylsalicylic acid with 2,3-dihydroxybenzoic acid in the Ln12 nanocluster. Intriguingly, Dy12 displays slow magnetic relaxation at low temperatures, while Gd12 shows a large magnetocaloric effect (MCE) of 35.63 J kg-1 K-1 at 2 K for ΔH = 7 T. Additionally, the introduction of numerous coordination water molecules in these clusters enables Dy12 and Gd12 with high proton conductivity, namely, 2.13 × 10-4 and 3.62 × 10-4 S cm-1 under 358 K and 95% RH humidity conditions.
Collapse
Affiliation(s)
- Jing Hao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jinyu Zheng
- State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC), Beijing 100083, P. R. China
| | - Juhong Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lulu Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rui Feng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jixing Zhao
- Analysis and Testing Center, Shihezi University, Xinjiang 832003, P.R. China
| | - Quanwen Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xian-He Bu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.,School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
10
|
Wang XL, Zhang Y, Chen YZ, Wang Y, Wang X. Two polymolybdate-directed Zn( ii) complexes tuned by a new bis-pyridine-bis-amide ligand with a diphenylketone spacer for efficient ampere sensing and dye adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two polymolybdate-based Zn(ii) complexes were constructed from a new bis-pyridine-bis-amide ligand, which can be used as electrocatalysts and electrochemical sensors for Cr(vi), KBrO3, H2O2 and AA, and exhibit selective adsorption of CV and MB.
Collapse
Affiliation(s)
- Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yue Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yong-Zhen Chen
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
11
|
Bi HX, Yin XY, Zhang XJ, Ma YY, Han ZG. Efficient visible-light-driven reduction of hexavalent chromium catalyzed by conjugated organic species modified hourglass-type phosphomolybdate hybrids. CrystEngComm 2022. [DOI: 10.1039/d1ce01467f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four conjugated-organic-species modified hourglass-type phosphomolybdate hybrids with a 0-D + 1-D → 3-D supramolecular structure exhibited favorable photocatalytic activity and stability towards Cr(vi) reduction.
Collapse
Affiliation(s)
- Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xiao-Yu Yin
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xiu-Juan Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
12
|
Hexanuclear nickel-based [P4Mo11O50] with photocatalytic reduction of CO2 activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Liu XM, Kang RK, Wang JL, Li JN, Chen QL, Xu Y. A Purely Inorganic Quasi-Keggin Polyoxometalate for Photocatalytic Conversion of Carbon Dioxide to Carbon Monoxide. Chempluschem 2021; 86:1014-1020. [PMID: 34286917 DOI: 10.1002/cplu.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Indexed: 01/06/2023]
Abstract
A pure inorganic cluster, H47 Na2 Co4 Mo24 (PO4 )11 O72 ⋅ 15H2 O (denoted as {Co4 Mo24 }), has been successfully synthesized by hydrothermal method. Notably, the assembly of a central {Co2 PO4 } tetrahedron and four peripheral {Co[P4 Mo6 ]} fragments gives rise to a rare "quasi-Keggin" structure of {Co4 Mo24 }, in which Co linkers continue to bridge adjacent substructures, resulting in the generation of 3D framework with large cavities. Benefitting from the combination of strong reductive {P4 Mo6 } units and Co active centers, the photocatalytic system with {Co4 Mo24 } as heterogeneous catalyst exhibits excellent activity for CO2 conversion to CO, offering the CO formation rate of 1848.3 μmol g-1 h-1 with high selectivity of 97.0 %. Besides, thermogravimetric and X-ray diffraction analysis confirm that {Co4 Mo24 } can maintain stable during the photocatalytic reaction process.
Collapse
Affiliation(s)
- Xiao-Mei Liu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Qiao-Ling Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
14
|
Li JN, Du ZY, Li NF, Han YM, Zang TT, Yang MX, Liu XM, Wang JL, Mei H, Xu Y. Two three-dimensional polyanionic clusters [M(P 4Mo 6) 2] (M = Co, Zn) exhibiting excellent photocatalytic CO 2 reduction performance. Dalton Trans 2021; 50:9137-9143. [PMID: 34115085 DOI: 10.1039/d1dt00809a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two captivating {P4Mo6}-based compounds, formulated as (H2bbi)2{[Co2(bbi)][Co2.33(H2O)4][H9.33CoP8Mo12O62]}·4H2O (1) and (H2bbi){[Zn(Hbbi)]2[Zn0.75(bbi)][K2Zn(H2O)4][H8.5ZnP8Mo12O62]} (2) [bbi = 1,1'-(1,4-butanediyl)bis(imidazole)], were successfully synthesized under hydrothermal conditions. Structural analysis demonstrates that compounds 1 and 2 are constructed from hourglass-shaped structures [M(P4Mo6O31)2]n- (M = Co, Zn), which are all made up of molybdophosphates and one transition metal ion as the central connecting node. Compounds 1 and 2 feature three-dimensional (3D) frameworks, which are all connected to form a 3D structure by metal ions and bbi ligands. More interestingly, compound 1 exhibits higher catalytic activity than 2 in CO2 photoreduction due to the suitable energy band structure of Co species in {P4Mo6} clusters. The CO yield was 3261 μmol g-1 with high selectivity in 8 h for compound 1 in photocatalytic CO2 reduction, which is highly promising in the photocatalytic field. Additionally, the photoluminescence properties of 2 were investigated.
Collapse
Affiliation(s)
- Jia-Nian Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ze-Yu Du
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ye-Min Han
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ting-Ting Zang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Mu-Xiu Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Xiao-Mei Liu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China. and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Zhang S, Lu Y, Sun X, Li Z, Dang T, Liu S. Proton transfer in polyamine-P 2Mo 5 model adducts: exploring the effect of polyamine cations on their proton conductivity. Dalton Trans 2020; 49:17301-17309. [PMID: 33205793 DOI: 10.1039/d0dt03446k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing acid-base pairs is one of the efficient strategies for the design of proton conductors with high conductivity, due to the ultrafast proton-hopping with a low energy barrier between a proton donor (acid group) and an acceptor (base group). In this study, an acid-base adduct polyamine-P2Mo5 model system was established, including adducts [C6N4H22][H2P2Mo5O23]·H2O (P2Mo5-TETA), [C4N3H16]2[P2Mo5O23]·H2O (P2Mo5-DETA), and [C2N2H10]2[H2P2Mo5O23] (P2Mo5-EN), (TETA = triethylenetetramine, DETA = diethylenetriamine, EN = ethanediamine). Proton conductivity analyses showed that adduct P2Mo5-EN exhibited the highest proton conductivity 1.13 × 10-2 S cm-1 at 65 °C and 95% RH, which was one and three orders of magnitude greater than those of P2Mo5-DETA and P2Mo5-TETA under the same conditions. Ea values of all three adducts are lower than 0.4 eV, which indicates that their proton transfer is attributed to the Grotthuss mechanism. Combined with visual structure analysis, the proton transport pathways of three adducts are highlighted. Moreover, we use this model system to discuss in detail the effect of pKa, proton density and size of polyamine molecules on the proton conductivity of organic amine-POM adducts.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | | | | | | | | | | |
Collapse
|