1
|
Zhang X, Liu Z, Shao B, Liang Q, Wu T, Pan Y, He Q, He M, Ge L, Huang J. Porphyrin-Based Metal-Organic Framework Photocatalysts: Structure, Mechanism and Applications. SMALL METHODS 2025:e2402096. [PMID: 39757519 DOI: 10.1002/smtd.202402096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Indexed: 01/07/2025]
Abstract
In recent years, porphyrins have been frequently reported as photocatalysts due to their fascinating photochemical properties. However, porphyrins have the same shortcomings as other homogeneous photocatalysts, such as poor stability and difficulty in recovering. To solve this problem, it is a good strategy to form a porphyrin-based metal-organic framework (PMOF) by modifying porphyrin functional groups and adding metals as nodes to connect and control the arrangement of porphyrins. The metal nodes control the rigidity and connectivity of the porphyrin modules to order them in the MOF, which improves the stability of the porphyrins, avoids porphyrin aggregation and folding, and increases the active sites for photocatalytic reactions. This review summarized the research progress of PMOF photocatalysts in the last ten years and analyzed the effects of the spatial structure, porphyrin ligands, porphyrin central metals, and metal nodes of PMOF on the photocatalytic performance. The applications of PMOF-based photocatalysts in H2 production, CO2 reduction, pollutant degradation, and sterilization are reviewed. In addition, the mechanism of these processes is described in detail. Finally, some suggestions on the development of PMOF photocatalysts are put forward.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
You ZX, Xiao Y, Zhang T, Guan QL, Xing YH, Bai FY. Design and Construction of the Uranyl Coordination Polymer with Multifunction Stimulus Response: Fluorescent Sensors for Halide Ions and Photochromism. Inorg Chem 2024; 63:9823-9830. [PMID: 38757599 DOI: 10.1021/acs.inorgchem.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
It can provide ideas for the use of uranium elements in the treatment of spent fuel from nuclear wastewater to explore the application potential of uranium element. Thus, it is necessary to research the structure and properties of a novel uranyl coordination polymer (CP) for uranium recovery and reuse. Herein, we designed and prepared a new uranyl CP U-CMNDI based on UO22+ and H2CMNDI (H2CMNDI = N, N'-bis(carboxymethyl)-1,4,5,8-naphthalenediimide). Structural analysis shows that two uranyl ions are connected by two parallel deprotonated CMNDI ligands to form a discrete uranyl dimer structure. U-CMNDI can act as a potential stimulus-responsive halide ion sensor by a fluorescence "turn on" response in water. The limit of detection for fluoride (F-), bromide (Br-), iodide (I-), and chloride (Cl-) is 5.00, 5.32, 5.49, and 5.73 μM, respectively. The fluorescence "turn on" behavior is based on the photoinduced electron transfer (PET) mechanism between halide ions and electron-deficient NDI cores. In addition, U-CMNDI demonstrates a color response to ultraviolet light, exhibiting reversible photochromic behavior with a notable color change. The color change mechanism can contribute to the PET process and the radical process.
Collapse
Affiliation(s)
- Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| |
Collapse
|
3
|
Said A, Chen G, Zhang G, Wang D, Liu Y, Gao F, Wang G, Tung CH, Wang Y. Enhancing the photocatalytic performance of a rutile unit featuring a titanium-oxide cluster by Pb 2+ doping. Dalton Trans 2024; 53:3666-3674. [PMID: 38293811 DOI: 10.1039/d3dt03865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Titanium-oxide clusters (TOCs) are well-defined molecular models for TiO2 materials and provide the opportunity to study the structure-activity relationships of TiO2. Here, we report a new Pb-doped TOC, Ti12Pb2, which resembles a two-layer decker of the {TiTi6} structural units of rutile TiO2 with two Ti4+ ions replaced by two Pb2+ ions. Its electronic structure, photoresponse, and photocatalytic performances were investigated and compared with those of the Ti14 cluster, which is isostructural to Ti12Pb2. Our results indicate that Pb2+ does not affect the electronic structure, but it greatly enhances the photocatalytic activity by improving the charge-separation and interfacial charge-transfer properties of the TOC. The successful synthesis of Ti12Pb2 highlights the roles of closed-shell heterometal ions in the construction of new TOCs. Our mechanism may be an inspiration for understanding the structure-activity relationships of closed-shell heterometal-doped TiO2.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Liu Y, Zhang G, Wang D, Chen G, Gao F, Tung CH, Wang Y. A cryptand-like Ti-coordination compound with visible-light photocatalytic activity in CO 2 storage. Dalton Trans 2024; 53:1989-1998. [PMID: 38205664 DOI: 10.1039/d3dt04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A cryptand-like Ti-coordination compound, namely Ti12Cs, comprising two Ti6-salicylate cages and hosting two Cs+ ions, was synthesized by the solvothermal method. It exhibits strong visible-light absorption with an absorption band edge of 652 nm, attributed to the electron transition from salicylate ligands to Ti ions. Electrochemical impedance, visible-light transient photocurrent response, and photoluminescence spectra confirm that Ti12Cs has excellent visible-light response and charge-separation properties. Ti12Cs can be used as a heterogeneous and recyclable photocatalyst for CO2/epoxide cycloaddition, with high utilization efficiency of visible-light under mild conditions. The mechanism investigation points to a synergistic effect of photocatalysis and Lewis acid catalysis.
Collapse
Affiliation(s)
- Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Wang D, Liu Y, Chen G, Gao F, Zhang G, Wang G, Tung CH, Wang Y. Ligation of Titanium-oxide and {Mo 2} Units for Solar CO 2 Storage. Inorg Chem 2023; 62:21074-21082. [PMID: 38095877 DOI: 10.1021/acs.inorgchem.3c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Two Mo-Ti-mixed oxide clusters, Ti6Mo4 and Ti4Mo4, which contain the {Mo2V} unit commonly observed in many polyoxomolybdates, were successfully synthesized. The introduction of a {Mo2V} dopant into a titanium-oxide cluster (TOC) results in a red shift of the absorption edge, hence leading to a substantial enhancement of visible-light absorption. The band gap electron transition mainly involves the ligand-to-metal charge transfer (LMCT, benzoate-to-Mo) and MoV d-d transition. Both clusters show favorable visible-light responsiveness and charge-separation efficiency. Both serve as heterogeneous photocatalysts and exhibit excellent catalytic activity in CO2/epoxide cycloadditions under very mild conditions. The mechanism study suggests that the catalytically active sites are mainly MoV, and the photogenerated electrons and holes are both involved. Ti6Mo4 exhibits better photocatalytic activity than Ti4Mo4, demonstrating the crucial role of the titanium-oxide core, which corresponds to improved light absorption and charge-separation efficiency. Our findings highlight the potential of the {Mo2V} unit in constructing Mo-Ti-mixed oxide clusters with interesting topologies and excellent solar-light-harvesting activity.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Zhou ZH, Li XJ, Huang ZW, Mei L, Ma FQ, Yu JP, Zhang Q, Chai ZF, Hu KQ, Shi WQ. Th 6-Based Multicomponent Heterometallic Metal-Organic Frameworks Featuring 6,12-Connected Topology for Iodine Adsorption. Inorg Chem 2023; 62:15346-15351. [PMID: 37682658 DOI: 10.1021/acs.inorgchem.3c02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.
Collapse
Affiliation(s)
- Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Xing-Jun Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Qiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Huang ZW, Hu KQ, Li XB, Bin ZN, Wu QY, Zhang ZH, Guo ZJ, Wu WS, Chai ZF, Mei L, Shi WQ. Thermally Induced Orderly Alignment of Porphyrin Photoactive Motifs in Metal-Organic Frameworks for Boosting Photocatalytic CO 2 Reduction. J Am Chem Soc 2023; 145:18148-18159. [PMID: 37531566 DOI: 10.1021/jacs.3c07047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Efficient transfer of charge carriers through a fast transport pathway is crucial to excellent photocatalytic reduction performance in solar-driven CO2 reduction, but it is still challenging to effectively modulate the electronic transport pathway between photoactive motifs by feasible chemical means. In this work, we propose a thermally induced strategy to precisely modulate the fast electron transport pathway formed between the photoactive motifs of a porphyrin metal-organic framework using thorium ion with large ionic radius and high coordination number as the coordination-labile metal node. As a result, the stacking pattern of porphyrin molecules in the framework before and after the crystal transformations has changed dramatically, which leads to significant differences in the separation efficiency of photogenerated carriers in MOFs. The rate of photocatalytic reduction of CO2 to CO by IHEP-22(Co) reaches 350.9 μmol·h-1·g-1, which is 3.60 times that of IHEP-21(Co) and 1.46 times that of IHEP-23(Co). Photoelectrochemical characterizations and theoretical calculations suggest that the electron transport channels formed between porphyrin molecules inhibit the recombination of photogenerated carriers, resulting in high performance for photocatalytic CO2 reduction. The interaction mechanism of CO2 with IHEP-22(Co) was clarified by using in-situ electron paramagnetic resonance, in-situ diffuse reflectance infrared Fourier transform spectroscopy, in-situ extended X-ray absorption fine structure spectroscopy, and theoretical calculations. These results provide a new method to regulate the efficient separation and migration of charge carriers in CO2 reduction photocatalysts and will be helpful to guide the design and synthesis of photocatalysts with superior performance for the production of solar fuels.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Ni Bin
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhi-Jun Guo
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Panda J, Tripathy SP, Dash S, Ray A, Behera P, Subudhi S, Parida K. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. NANOSCALE 2023; 15:7640-7675. [PMID: 37066602 DOI: 10.1039/d3nr00274h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
9
|
Wang JY, Mei L, Liu Y, Jin QY, Hu KQ, Yu JP, Jiao CS, Zhang M, Shi WQ. Unveiling Structural Diversity of Uranyl Compounds of Aprotic 4,4'-Bipyridine N, N'-Dioxide Bearing O-Donors. ACS OMEGA 2023; 8:8894-8909. [PMID: 36910938 PMCID: PMC9996810 DOI: 10.1021/acsomega.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As an aprotic O-donor ligand, 4,4'-bipyridine N,N'-dioxide (DPO) shows good potential for the preparation of uranyl coordination compounds. In this work, by regulating reactant compositions and synthesis conditions, diverse coordination assembly between uranyl and DPO under different reaction conditions was achieved in the presence of other coexisting O-donors. A total of ten uranyl-DPO compounds, U-DPO-1 to U-DPO-10, have been synthesized by evaporation or hydro/solvothermal treatment, and the possible competition and cooperation of DPO with other O-donors for the formation of these uranyl-DPO compounds are discussed. Starting with an aqueous solution of uranyl nitrate, it is found that an anionic nitrate or hydroxyl group is involved in the coordination sphere of uranyl in U-DPO-1 ((UO2)(NO3)2(H2O)2·(DPO)), U-DPO-2 ((UO2)(NO3)2(DPO)), and U-DPO-3 ((UO2)(DPO)(μ2-OH)2), where DPO takes three different kinds of coordination modes, i.e. uncoordinated, monodentate, and biconnected. The utilization of UO2(CF3SO3)2 in acetonitrile, instead of an aqueous solution of uranyl nitrate, precludes the participation of nitrate and hydroxyl, and ensures the engagement of DPO ligands (4-5 DPO ligands for each uranyl) in a uranyl coordination sphere of U-DPO-4 ([(UO2)(CF3SO3)(DPO)2](CF3SO3)), U-DPO-5 ([UO2(H2O)(DPO)2](CF3SO3)2) and U-DPO-6 ([(UO2)(DPO)2.5](CF3SO3)2). Moreover, when combined with anionic carboxylate ligands, terephthalic acid (H2TPA), isophthalic acid (H2IPA), and succinic acid (H2SA), DPO works well with them to produce four mixed-ligand uranyl compounds with similar structures of two-dimensional (2D) networks or three-dimensional (3D) frameworks, U-DPO-7 ((UO2)(TPA)(DPO)), U-DPO-8 ((UO2)2(DPO)(IPA)2·0.5H2O), U-DPO-9 ((UO2)(SA)(DPO)·H2O), and U-DPO-10 ((UO2)2(μ2-OH)(SA)1.5(DPO)). Density functional theory (DFT) calculations conducted to probe the bonding features between uranyl ions and different O-donor ligands show that the bonding ability of DPO is better than that of anionic CF3SO3 -, nitrate, and a neutral H2O molecule and comparable to that of an anionic carboxylate group. Characterization of physicochemical properties of U-DPO-7 and U-DPO-10 with high phase purity including infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and luminescence properties is also provided.
Collapse
Affiliation(s)
- Jing-yang Wang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-yan Jin
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-pan Yu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cai-shan Jiao
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Meng Zhang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Wei-qun Shi
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Said A, Zhang G, Liu C, Wang D, Niu H, Liu Y, Chen G, Tung CH, Wang Y. A butterfly-like lead-doped titanium-oxide compound with high performance in photocatalytic cycloaddition of CO 2 to epoxide. Dalton Trans 2023; 52:2392-2403. [PMID: 36723215 DOI: 10.1039/d2dt03990g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cycloaddition reaction of CO2 to epoxides is quite promising for CO2 capture and storage as well as the production of value-added fine chemicals. Herein, a novel atomically precise lead-doped titanium-oxide cluster with the formula Ti10Pb2O16(phen)4(Ac)12(DMF)2 (denoted as Ti10Pb2; phen = 1,10-phenanthroline; Ac = acetate; DMF = dimethylformamide) was synthesized through a facile solvothermal process, and is a molecular photocatalyst with surface-anchored main-group metal active sites. Its structure was characterized by single-crystal X-ray diffraction and other complementary techniques. Ti10Pb2 showed high photo-response and charge-separation efficiency under simulated sunlight irradiation. Ti10Pb2 was successfully used in the cycloaddition reaction of CO2 with epoxides under solvent-free conditions. While its catalytic activity due to the Lewis acidity was moderate, simulated solar light irradiation further enhanced the reaction rate, demonstrating the synergistic effect of photocatalysis and Lewis-acid thermocatalysis.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Said A, Liu C, Gao C, Wang D, Niu H, Liu Y, Wang G, Tung CH, Wang Y. Lead-Decorated Titanium Oxide Compound with a High Performance in Catalytic CO 2 Insertion to Epoxides. Inorg Chem 2023; 62:1901-1910. [PMID: 36184952 DOI: 10.1021/acs.inorgchem.2c01315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CO2 cycloaddition to epoxides is an efficient method for CO2 capture and storage, important not only for reducing greenhouse gas emission but also for producing cyclic carbonates, which are valuable industrial materials. In this study, we report a novel high-nuclearity titanium oxide cluster (TOC) inlayed with main-group element Pb2+, H2Ti16Pb9O24(SA)18(DMF)10(OH2)2 (denoted as 1; SA = salicylate; DMF = N,N-dimethylformamide), which has the property of visible-light absorption and has shown high catalytic activities for cycloadditions of CO2 under visible-light irradiation. The cluster was synthesized in a high yield in a facial solvothermal process. Its structure and electronic structure were characterized by single-crystal X-ray diffraction, density functional theory calculations, and complementary techniques. The cycloaddition reactions were performed under solvent-free conditions. While the catalytic activity due to the Lewis acidity was moderate, visible-light irradiation further folded the reaction rates. The turnover number reached 3400 with a turnover frequency of 120 h-1. Mechanism studies indicated a synergistic effect of the Lewis acidity and photogenerated charge carriers. The performance of 1 in reversible I2 uptake was also investigated. This study demonstrates the high potential of heterometal-decorated TOCs in the cost-effective and efficient CO2 cycloaddition reaction under mild conditions.
Collapse
Affiliation(s)
- Amir Said
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chang Gao
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
12
|
Chen SH, Wang HQ. Synthesis, structures, and characterizations of four uranyl coordination polymers constructed by mixed-ligand strategy. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
14
|
Wang D, Said A, Liu Y, Niu H, Liu C, Wang G, Li Z, Tung CH, Wang Y. Cr-Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorg Chem 2022; 61:14887-14898. [PMID: 36063420 DOI: 10.1021/acs.inorgchem.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solvothermal reaction of titanium isopropoxide and chromate in the presence of benzoate produced two novel host-guest clusters encapsulating Cs+ or H3O+, (H3O)@Ti7Cr14 and Cs@Ti7Cr14. The most remarkable feature is that the Ti7O7 ring is concentrically embraced by a Cr14O14 ring to form a rigid Ti7Cr14 host. ESI-MS and 133Cs NMR revealed that the overall framework structures are preserved, whereas the benzoate ligands on the two clusters may be labile in solutions. Both (H3O)@Ti7Cr14 and Cs@Ti7Cr14 exhibit good UV-vis light-responsive properties and photocatalytic activities, with absorption edges extending up to 780 nm. Cs@Ti7Cr14 is an effective visible-light-responsive photocatalyst in both the heterogeneous methylene dye degradation and homogeneous CO2 cycloaddition reaction under mild conditions like room temperature and 1 bar of CO2. According to the mechanism studies, Cs+, as a rigid guest, can significantly improve the photogenerated charge separation efficiency of the Ti7Cr14 host, thereby improving its interface charge separation properties, photocurrent, and photocatalytic activities. Our findings not only provide new members of heterometallic titanium oxide clusters to enrich the metal oxide cluster family but also open up new possibilities for their photoresponses, which may play an important role in solar energy harvesting for sustainable chemistry.
Collapse
Affiliation(s)
- Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Liu C, Niu H, Wang D, Gao C, Said A, Liu Y, Wang G, Tung CH, Wang Y. S-Scheme Bi-oxide/Ti-oxide Molecular Hybrid for Photocatalytic Cycloaddition of Carbon Dioxide to Epoxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Caiyun Liu
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chang Gao
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Amir Said
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Laboratory for Colloid and Interface Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Hu Y, Shen Z, Li B, Tan X, Han B, Ji Z, Wang J, Zhao G, Wang X. State-of-the-art progress for the selective crystallization of actinides, synthesis of actinide compounds and their functionalization. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127838. [PMID: 34844805 DOI: 10.1016/j.jhazmat.2021.127838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Crystallization and immobilization of actinides to form actinide compounds are of significant importance for the extraction and reutilization of nuclear waste in the nuclear industry. In this paper, the state-of-art progress in the crystallization of actinides are summarized, as well as the main functionalization of the actinide compounds, i.e., as adsorbents for heavy metal ions and organic pollutant in waste management, as (photo)catalysts for organic degradation and conversion, including degradation of organic dyes and antibiotics, dehydrogenation of N-heterocycles, CO2 cycloaddition, selective alcohol oxidation and selective oxidation of sulfides. This review will give a comprehensive summary about the synthesis and application exploration of solid actinide crystalline salts and actinide-based metal organic frameworks in the past decades. Finally, the future perspectives and challenges are proposed in the end to give a promising direction for future investigation.
Collapse
Affiliation(s)
- Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bingfeng Li
- POWERCHINA SICHUAN Electric Power Engineering CO., LTD, Chengdu 610041, PR China
| | - Xiaoli Tan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bing Han
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhuoyu Ji
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
18
|
Two tetravalent uranium silicate and germanate crystals with three membered single-ring by molten salt method: K2USi3O9 and Cs2UGe3O9. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Ma J, Wu Y, Yan X, Chen C, Wu T, Fan H, Liu Z, Han B. Efficient synthesis of cyclic carbonates from CO 2 under ambient conditions over Zn(betaine) 2Br 2: experimental and theoretical studies. Phys Chem Chem Phys 2022; 24:4298-4304. [PMID: 35107469 DOI: 10.1039/d1cp05553d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is very interesting to synthesize high value-added chemicals from CO2 under mild conditions with low energy consumption. Here, we report that a novel catalyst, Zn(betaine)2Br2, can efficiently promote the cycloaddition of CO2 with epoxides to synthesize cyclic carbonates under ambient conditions (30 °C, 1 atm). DFT calculations provide important insights into the mechanism, particularly the unusual synergistic catalytic action of Zn2+, Br- and NR4+, which is the critical factor for the outstanding performance of Zn(betaine)2Br2. The unique features of the catalyst are that it is cheap, green and very easy to prepare.
Collapse
Affiliation(s)
- Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
20
|
Huang ZW, Hu KQ, Mei L, Wang DG, Wang JY, Wu WS, Chai ZF, Shi WQ. Encapsulation of Polymetallic Oxygen Clusters in a Mesoporous/Microporous Thorium-Based Porphyrin Metal-Organic Framework for Enhanced Photocatalytic CO 2 Reduction. Inorg Chem 2022; 61:3368-3373. [PMID: 35164505 DOI: 10.1021/acs.inorgchem.1c04033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solar-initiated CO2 reduction is significant for green energy development. Herein, we have prepared a new mesoporous/microporous porphyrin metal-organic framework (MOF), IHEP-20, loaded with polymetallic oxygen clusters (POMs) to form a composite material POMs@IHEP-20 for visible-light-driven photocatalytic CO2 reduction. The as-made composite material exhibits good stability in water from pH 0 to 11. After POMs were introduced to IHEP-20, they showed superior activity toward photocatalytic CO2 reduction with a CO production rate of 970 μmol·g-1·h-1, which is 3.27 times higher than that of pristine IHEP-20. This study opens a new door for the design and synthesis of high-performance catalysts for the photocatalytic reduction of CO2.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - De-Gao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing-Yang Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Su Z, Ma L, Wei J, Bai X, Wang N, Li J. A Zinc Porphyrin Polymer as Efficient Bifunctional Catalyst for Conversion of CO
2
to Cyclic Carbonates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenping Su
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Linjing Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Jiaojiao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Xiaolong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| |
Collapse
|
22
|
Gorbunova YG, Enakieva YY, Volostnykh MV, Sinelshchikova AA, Abdulaeva IA, Birin KP, Tsivadze AY. Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Deng X, Zou G, Tu B, Hu M, Zhu W, He R, Chen T. Efficient photoreduction of hexavalent uranium over defective ZnO nanoparticles by oxygen defect engineering. CrystEngComm 2022. [DOI: 10.1039/d2ce00892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen-defect engineering of ZnO-400 nanosheets to enhance their photocatalytic performance for U(vi) reduction.
Collapse
Affiliation(s)
- Xiaochuan Deng
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Geng Zou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Boyuan Tu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
- School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mingfang Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
24
|
Hu K, Zeng L, Kong X, Huang Z, Yu J, Mei L, Chai Z, Shi W. Viologen‐Based Uranyl Coordination Polymers: Anion‐Induced Structural Diversity and the Potential as a Fluorescent Probe. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐He Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Fang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
25
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Yang Q, Peng H, Zhang Q, Qian X, Chen X, Tang X, Dai S, Zhao J, Jiang K, Yang Q, Sun J, Zhang L, Zhang N, Gao H, Lu Z, Chen L. Atomically Dispersed High-Density Al-N 4 Sites in Porous Carbon for Efficient Photodriven CO 2 Cycloaddition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103186. [PMID: 34536029 DOI: 10.1002/adma.202103186] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Highly active catalysts that can directly utilize renewable energy (e.g., solar energy) are desirable for CO2 value-added processes. Herein, aiming at improving the efficiency of photodriven CO2 cycloaddition reactions, a catalyst composed of porous carbon nanosheets enriched with a high loading of atomically dispersed Al atoms (≈14.4 wt%, corresponding to an atomic percent of ≈7.3%) coordinated with N (AlN4 motif, Al-N-C catalyst) via a versatile molecule-confined pyrolysis strategy is reported. The performance of the Al-N-C catalyst for catalytic CO2 cycloaddition under light irradiation (≈95% conversion, reaction rate = 3.52 mmol g-1 h-1 ) is significantly superior to that obtained under a thermal environment (≈57% conversion, reaction rate = 2.11 mmol g-1 h-1 ). Besides the efficient photothermal conversion induced by the carbon matrix, both experimental and theoretical analysis reveal that light irradiation favors the photogenerated electron transfer from the semiconductive Al-N-C catalyst to the epoxide reactant, facilitating the formation of a ring-opened intermediate through the rate-limiting step. This study not only provides an advanced Al-N-C catalyst for photodriven CO2 cycloaddition, but also furnishes new insight for the rational design of superior photocatalysts for diverse heterogeneous catalytic reactions in the future.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huaitao Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Qian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xu Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiajun Zhao
- Institute of Fuel Cells, Interdisciplinary Science Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kun Jiang
- Institute of Fuel Cells, Interdisciplinary Science Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd., Ningbo New Materials Innovation Center, East District Building 1 No.1, 2660 Yongjiang Avenue, Yinzhou District, Ningbo, 315100, P. R. China
| | - Jian Sun
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Honglin Gao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Zhiyi Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Du Y, Xu X, Ma F, Du C. Solvent-Free Synthesis of Iron-Based Metal-Organic Frameworks (MOFs) as Slow-Release Fertilizers. Polymers (Basel) 2021; 13:561. [PMID: 33668604 PMCID: PMC7918741 DOI: 10.3390/polym13040561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Metal-organic frameworks (MOFs) were usually synthesized in hydrothermal conditions; in this study, a more energy-saving, easier to control, and solvent-free mechanochemical method was firstly applied to synthesize MOFs with varied reactants as slow release fertilizer, and the components and structures were characterized by X-ray diffraction (XRD), Fourier transform infrared total attenuated reflectance (FTIR-ATR), and laser-induced breakdown spectroscopy (LIBS). Results showed that three MOFs (compounds I, II, and III) were obtained, the MOFs were confirmed as oxalate phosphate oxalate frameworks (OPA-MOF), and ions were adsorbed between layers that contributed to the contents, while urea molecules mainly impacted the structure. The elemental compositions significantly varied among the three compounds; compound I showed the highest content of N (4.91%), P (15.71%), and Fe (18.60%), compound III indicated the highest content of C (6.52%) and K (12.59%), while the contents of C, K, P, and Fe in compound II were in the medium range. Similar release profiles of Fe and P were found among the three MOFs, and the release rates of nutrients were demonstrated as the order of N > K > P > Fe. The compositions and release profiles demonstrated potential application of MOFs as a novel slow-release fertilizer.
Collapse
Affiliation(s)
- Yaxiao Du
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China; (Y.D.); (X.X.); (F.M.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuebin Xu
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China; (Y.D.); (X.X.); (F.M.)
| | - Fei Ma
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China; (Y.D.); (X.X.); (F.M.)
| | - Changwen Du
- The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 210008, China; (Y.D.); (X.X.); (F.M.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|