1
|
Kaur B, Gourkhede R, Balakrishna MS. Luminescence Behavior of Cationic and Neutral Cu I Complexes of Phosphine and Pyridine Embedded 1,2,3-Triazole. Inorg Chem 2024; 63:16981-16990. [PMID: 39236159 DOI: 10.1021/acs.inorgchem.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Synthesis of a potentially polydentate, phosphine and pyridine embedded 1,2,3-triazole, o-Ph2P(C6H4)C(CH)-1,2,3-N3(CH2)(Py) (1) (here onward referred to as "P∩N3∩N") and its copper complexes are described. Reactions of 1 with CuX yielded mononuclear [Cu{(P∩N3∩N)2-κ2-P,N}]X (2 - 4; X = I, CuBr2 and CuCl2) and dinuclear [Cu2{(P∩N3∩N)2-κ4-P,N,N,N}]X (5 X = OTf, 6 X = BF4) complexes. Interestingly, the cationic complex [Cu{(P∩N3∩N)2-κ2-P,N}]I (2) in acetonitrile changes into neutral complex [Cu3(μ2-I)2(μ3-I)(NCCH3){(P∩N3∩N)-κ4(μ2-P,N)(μ2-N,N)}](7), which on addition of dichloromethane reverts back to the cationic form. The photoluminescent characteristics of cationic complexes are significantly impacted by the nature of counteranions and hence the corresponding photoluminescence quantum yields. Cationic complex 2 showed an increase in quantum yield and lifetime on changing over to neutral complex 7. TD-DFT calculations also assisted in assessing the photophysical properties.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rani Gourkhede
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Zhao X, Chen WJ, Liang QM, Chen SK, Xun J, Geng BJ, Su HF, Yang Y. Ag +-Induced Assembly of Pt Clusters for Photocatalytic Hydrogen Production. Inorg Chem 2024. [PMID: 39259024 DOI: 10.1021/acs.inorgchem.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cluster-assembled nanowires provide a unique strategy for the preparation of high-performance nanostructures. However, existing preparations are limited by complex processes and harsh reaction conditions. Here, Ag+ ions were utilized as a novel structure-directing agent to generate the self-assembly of Pt clusters to form ultrafine nanowires with a diameter of less than 5 nm. Electrospray ionization mass spectrometry (ESI-MS) and extended X-ray absorption fine structure (EXAFS) characterizations demonstrated that every Ag+ bridged two [Pt3(CO)3(μ2-CO)3]n2- clusters through coordination and formed a sandwich-like structure of [Pt3(CO)3(μ2-CO)3]nAg[Pt3(CO)3(μ2-CO)3]m3-. As a result, multiple sandwich-like structures of [Pt3(CO)3(μ2-CO)3]nAg[Pt3(CO)3(μ2-CO)3]m3- were established by Ag+ to form Pt nanowire superstructures {[Pt3(CO)6]nAg[Pt3(CO)6]mAg[Pt3(CO)6]x}∞ (abbreviated as Ag-Pt NWS). Our results demonstrate that the Pt nanowire superstructures showed promising cocatalytic performance for photocatalytic H2 production with the involvement of Ag+, which promises a desirable way to develop advanced functional nanomaterials.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
| | - Wen-Jie Chen
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Su-Kang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jiao Xun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bi-Jun Geng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hai-Feng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Ghosh M, Parvin N, Panwaria P, Tothadi S, Bakthavatsalam R, Therambram A, Khan S. Diverse structural reactivity patterns of a POCOP ligand with coinage metals. Dalton Trans 2024; 53:7763-7774. [PMID: 38619861 DOI: 10.1039/d3dt03921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We have utilised the 4,6-di-tert-butyl resorcinol bis(diphenylphosphinite) (POCOP) ligand for exploring its coordination ability towards group 11 metal centres. The treatment of the bidentate ligand 1 with various coinage metal precursors afforded a wide range of structurally diverse complexes 2-12, depending upon the metal precursors used. This furnishes several multinuclear Cu(I) complexes with dimeric (2) and tetrameric cores (3, 4, and 5). The tetrameric stairstep complex 4 shows thermochromic behaviour, whereas the dimeric complex 2 and tetrameric complex 3 show luminescence properties at cryogenic temperatures. Interestingly, the halide substitution reaction of the dimeric complex 2 with KPPh2 produces a unique mixed phosphine-based tetrameric Cu(I) complex, 5. Treatment of the POCOP ligand with [CuBF4(CH3CN)4] in the presence of 2,2'-bipyridine afforded heteroleptic complex 6, consisting of tri- and tetra-coordinated cationic Cu(I) centres. Furthermore, we could also isolate cubane (8) and stairstep (9) complexes of Ag(I). The cationic Au(I) complex (12) was obtained from the dinuclear Au(I) complex of POCOP, 11. Complex 12 revealed the presence of a strong intramolecular aurophilic interaction with an Au⋯Au bond distance of 3.1143(9) Å. Subsequently, the photophysical properties of these complexes have been studied. All the complexes were characterised by single-crystal X-ray diffraction studies, routine NMR techniques, and mass spectroscopy.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Nasrina Parvin
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijub Badheka Marg, Bhavnagar 364002, India
| | - Rangarajan Bakthavatsalam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Srinivasapuram-Jangalapalli Village, Tirupati 517619, India
| | - Arshad Therambram
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
4
|
Feng M, Liu F, Yang N, Yu J, Yang W, Young DJ, Cao XQ, Li HX, Ren ZG. One-Dimensional Heterobimetallic Au/Ag Coordination Polymer Showing a Selective, Reversible, and Visible Vapor-Chromic Photoluminescent Response toward Methanol. Inorg Chem 2023; 62:6439-6446. [PMID: 37053452 DOI: 10.1021/acs.inorgchem.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
A heterobimetallic coordination polymer [Au4(dppmt)4(AgCl)2]n (1) incorporating an in situ generated P-S ligand (dppmtH) was synthesized from the solvothermal reaction of Au(tht)Cl, AgCl, and dpppyatc in CH3CN/CH2Cl2 (dppmtH = (diphenylphosphino)methanethiol, tht = tetrahydrothiophene, dpppyatc = N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide). The structure of 1 contains a one-dimensional helical Au-Au chain in which the unique [Au4Ag2S2] cluster units are connected by [Au2(dppmt)2] dimers. Upon excitation at 343 nm, 1 exhibited cyan (495 nm) phosphorescent emission at quantum yield (QY) = 22.3% and τ = 0.78 μs (λex = 375 nm). Coordination polymer 1 exhibited a rapid, selective, reversible, and visible vapor-chromic response on exposure to methanol (MeOH) vapor with its emission shifting to a more intense green (530 nm, λex = 388 nm) with QY = 46.8% and τ = 1.24 μs (λex = 375 nm). A polymethylmethacrylate film containing 1 served as a reversible chemical sensor for the sensitive detection of MeOH in air.
Collapse
Affiliation(s)
- Mengyao Feng
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fuyuan Liu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Ningwen Yang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jiayao Yu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, People's Republic of China
| | - David James Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Xiang-Qian Cao
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hong-Xi Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhi-Gang Ren
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Hu Q, Zhang C, Wu X, Liang G, Wang L, Niu X, Wang Z, Si WD, Han Y, Huang R, Xiao J, Sun D. Highly Effective Hybrid Copper(I) Iodide Cluster Emitter with Negative Thermal Quenched Phosphorescence for X-Ray Imaging. Angew Chem Int Ed Engl 2023; 62:e202217784. [PMID: 36647290 DOI: 10.1002/anie.202217784] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The low efficiency triplet emission of hybrid copper(I) iodide clusters is a critical obstacle to their further practical optoelectronic application. Herein, we present an efficient hybrid copper(I) iodide cluster emitter (DBA)4 Cu4 I4 , where the cooperation of excited state structure reorganization and the metallophilicity interaction enables ultra-bright triplet yellow-orange emission with a photoluminescence quantum yield over 94.9 %, and the phonon-assisted de-trapping process of exciton induces the negative thermal quenching effect at 80-300 K. We also investigate the potential of this emitter for X-ray imaging. The (DBA)4 Cu4 I4 wafer demonstrates a light yield higher than 104 photons MeV-1 and a high spatial resolution of ≈5.0 lp mm-1 , showing great potential in practical X-ray imaging applications. Our new copper(I) iodide cluster emitter can serve as a model for investigating the thermodynamic mechanism of photoluminescence in hybrid copper(I) halide phosphorescence materials.
Collapse
Affiliation(s)
- Qingsong Hu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Xian Wu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China.,Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China
| | - Xiaowei Niu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Yibo Han
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ruiqin Huang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiawen Xiao
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
6
|
A Novel Photoluminescent Ag/Cu Cluster Exhibits a Chromic Photoluminescence Response towards Volatile Organic Vapors. Molecules 2023; 28:molecules28031257. [PMID: 36770923 PMCID: PMC9921385 DOI: 10.3390/molecules28031257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A new Ag/Cu bimetallic cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(EtOH)2](ClO4)4 (1, bdppthi = N,N'-bis(diphenylphosphanylmethyl)-tetrahydroimidazole) exhibited strong phosphorescent (PL) emission at 644 nm upon excitation at 400 nm. Removal of the coordinated EtOH molecules in 1 resulted in derivative 1a, which exhibited significant red-shifted emission at 678 nm. The structure and PL of 1 was restored on exposure to EtOH vapor. Cluster 1a also exhibited a vapor-chromic PL response towards other common organic solvent vapors including acetone, MeOH and MeCN. A PMMA film of 1a was developed as a reusable visible sensor for MeCN.
Collapse
|
7
|
Miao H, Pan X, Li M, Zhaxi W, Wu J, Huang Z, Liu L, Ma X, Jiang S, Huang W, Zhang Q, Wu D. A Copper Iodide Cluster-Based Coordination Polymer as an Unconventional Zero-Thermal-Quenching Phosphor. Inorg Chem 2022; 61:18779-18788. [DOI: 10.1021/acs.inorgchem.2c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiancheng Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| |
Collapse
|
8
|
Huang Q, Zhang R, He LH, Chen JL, Zhao F, Liu SJ, Wen HR. Thermo-, Mechano-, and Vapochromic Dinuclear Cuprous-Emissive Complexes with a Switchable CH 3CN-Cu Bond. Inorg Chem 2022; 61:15629-15637. [PMID: 36129327 DOI: 10.1021/acs.inorgchem.2c02506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thermo-, mechano-, and vapochromic bimetallic cuprous-emissive complex has been reported, and the origin and application of its tri-stimuli-responsive luminescence have been explored. As revealed by single-crystal structure analysis, thermo- and vapochromic luminescence adjusted by heating at 60 °C and CH3CN vapor fuming, accompanied by a crystalline-to-crystalline transition, is due to the breaking and rebuilding of the CH3CN-Cu bond, as supported by 1H nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetry (TG), and time-dependent density functional theory (TD-DFT) analyses of the CH3CN-coordinated species [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)(CH3CN)](ClO4)·H2O (1) and its CH3CN-removed derivative [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)](ClO4)·H2O (2). Luminescence mechanochromism, mixed with a crystalline-to-amorphous transition where the initial crystalline is different for 1 and 2, is mainly assigned as the destruction of the CH3CN-Cu bonding and/or the O···HNdppa and OH···Ntriazolyl hydrogen bonds. It is also suggested that a rational use of switchable coordination such as weak metal-solvent bonding is a feasible approach to develop multi-stimuli-responsive luminescent materials and devices.
Collapse
Affiliation(s)
- Qin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
9
|
Alizadeh S, Mague JT, Takjoo R. Structural, theoretical investigations and HSA-interaction studies of three new copper(II) isothiosemicarbazone complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Yao XQ, Ma CY, Gong LH, Xiao GB, Yan PJ, Pan ZR. A dinuclear cuprous chloride coordination polymer with grinding triggered luminescence enhancement and temperature dependent luminescent properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Ju P, Huang Q, Zhang R, Chen JL, Zhao F, Liu SJ, Wen HR. A tricolor-switchable stimuli-responsive luminescent binuclear Cu( i) complex with switchable NH⋯O interactions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blue-green-yellow tricolor luminescence conversion is attributed to the loss and recovery of CH2Cl2 solvent molecules and the destruction and restoration of the orderly packing array caused by the breaking and rebuilding of NH⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Peng Ju
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Qin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| |
Collapse
|
12
|
Yang ZC, Song KY, Zhou PK, Zong LL, Li HH, Chen ZR, Jiang R. Sensitive luminescence mechanochromism and unique luminescence thermochromism tuned by bending the P–O–P skeleton in the diphosphonium/iodocuprate( i) hybrid. CrystEngComm 2022. [DOI: 10.1039/d2ce00408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique luminescence mechano/thermochromism of a diphosphonium/iodocuprate(i) hybrid is led by the mechanically induced adjustments in cuprophilic interactions and bent P–O–P backbone upon heating.
Collapse
Affiliation(s)
- Zhen-Cong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
| | - Kai-Yue Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
| | - Pan-Ke Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
| | - Lu-Lu Zong
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhi-Rong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Rong Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
| |
Collapse
|
13
|
Han Q, Ye X, Zheng X, Guo Q, Lin Q, Li C, Jiang J, Liu Y, Tao X. Multiple stimuli triggered structural isomerization of copper iodide–pyridine crystals. CrystEngComm 2022. [DOI: 10.1039/d1ce01395e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural isomerization of copper iodide–pyridine crystals under multiple stimuli was monitored, revealing a three-step dissociation–reorganization mechanism.
Collapse
Affiliation(s)
- Quanxiang Han
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
14
|
Deng YH, Yan YJ, Zhang J, Na LP, Zhang Y, Dong WK. Exploitation of a Half-Conjugate Polydentate Salamo-Salen Hybrid Ligand and Its Two Phenoxide-Bridged Heterohexanuclear 3d-s Double-Helical Cluster Complexes. Inorg Chem 2021; 61:1018-1030. [PMID: 34967616 DOI: 10.1021/acs.inorgchem.1c03066] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A half-conjugate polydentate Salamo-Salen hybrid ligand, H5L, containing two unique N2O2 pockets was first designed so that these metal ions in the complexes appear in different coordination modes. Two heterohexanuclear 3d-s double-helical cluster complexes, [Zn4Ca2L2(μ1-OAc)2(EtOH)2]·2EtOH (1; EtOH = ethanol) and [Zn4Sr2L2(μ2-OAc)2(MeOH)2]·2CH2Cl2 (2; MeOH = methanol), are reported that are formed through the reaction of H5L with zinc(II) and calcium(II) acetate or strontium(II) acetate, respectively. IR spectral analysis of the two complexes showed the existence of monodentate- and bidentate-coordinated acetate ions. The fluorescence properties of the ligand and its two heterohexanuclear complexes were explored in MeOH and water solutions, separately. In addition, theoretical calculations (density functional theory, interaction region indicator, and bond order) were performed to further understand the formation of a single-molecular double helix and the electron distribution characteristics of the two complexes.
Collapse
Affiliation(s)
- Yun-Hu Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Li-Ping Na
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
15
|
Yu P, Peng D, He LH, Chen JL, Wang JY, Liu SJ, Wen HR. A Mechanochromic and Vapochromic Luminescent Cuprous Complex Based on a Switchable Intramolecular π···π Interaction. Inorg Chem 2021; 61:254-264. [PMID: 34951312 DOI: 10.1021/acs.inorgchem.1c02807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An in-depth study on a stimuli-responsive tetranuclear cuprous luminescent complex is reported and gives new insights into the origin and possible use of the observed stimuli-responsive luminescence. Its crystalline polymorphs with two different shapes are obtained by using different crystallization solvents and show distinct emissions, with one being blue emissive and the other being yellow emissive. Upon grinding, only the blue-emitting polymorph has a marked change in the emission color from blue to yellow, and its ground sample exhibits a yellow emission similar to that of the yellow-emitting polymorph. Interestingly, the yellow-emitting polymorph after exposure to acetone vapor can emit a blue emission and display luminescence mechanochromism similar to that of the blue-emitting polymorph. Single-crystal structural analyses of the two different polymorphs reveal the relationship between the mechanochromic luminescence and the geometrical configuration of the {Cu(μ-dppm)2Cu} unit and intramolecular "pyridyl/phenyl" π···π interactions, supported as well by their PXRD, FT-IR, TGA, and PL studies in various states and by TD-DFT analyses. The results demonstrate the different roles of switchable intramolecular π···π interactions and the geometrical configuration of the {Cu(μ-dppm)2Cu} unit in this stimuli-responsive luminescence and potential applications of such stimuli-responsive luminescence in optical sensing and anticounterfeiting encryption technologies and deepen the understanding of such stimuli-responsive luminescence originating from switchable intramolecular π···π interactions. In addition, it is clearly suggested that the rational utilization of switchable intramolecular π···π interactions is a feasible route for developing stimuli-responsive intelligent luminescent materials and devices.
Collapse
Affiliation(s)
- Ping Yu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Dan Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
16
|
Peng YC, Jin JC, Gu Q, Dong Y, Zhang ZZ, Zhuang TH, Gong LK, Ma W, Wang ZP, Du KZ, Huang XY. Selective Luminescence Response of a Zero-Dimensional Hybrid Antimony(III) Halide to Solvent Molecules: Size-Effect and Supramolecular Interactions. Inorg Chem 2021; 60:17837-17845. [PMID: 34738796 DOI: 10.1021/acs.inorgchem.1c02445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zero-dimensional (0D) metal halides with solid-state luminescence switching (SSLS) have attracted attention as sensors and luminescent anticounterfeiting. Herein, selective solvent molecule response and accordingly luminescence switching were discovered in 0D [EtPPh3]2[SbCl5] (1, EtPPh3 = ethyltriphenylphosphonium). More than a dozen kinds of solvent molecules have been tested to find out the selection rule for molecule absorption in 1, which is demonstrated to be the size effect of guest molecules. Confirmed by crystal structural analysis, only the solvents with molecular volume less than 22.3 Å3 could be accommodated in 1 leading to the solvatochromic photoluminescence (PL). The mechanism of solvatochromic PL was also deeply studied, which was found to be closely related to the supramolecular interactions between solvent molecules and the host material. Different functional groups of the solvent molecule can affect its strength of hydrogen bonding with [SbCl5]2-, which is crucial for the distortion level of [SbCl5]2- unit and thus results in not only distinct solvatochromic PL but also distinct thermochromic PL. In addition, they all show typical self-trapped exciton triplet emissions. The additional supramolecular interactions from guest molecules can enhance the photoluminescence quantum yield to be as high as 95%.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qi Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Liao-Kuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
17
|
Woodhouse SS, Dais TN, Payne EH, Singh MK, Brechin EK, Plieger PG. The structural manipulation of a series of Ni 4 defective dicubanes: Synthesis, X-ray Structures, Magnetic and Computational analyses. Dalton Trans 2021; 50:5318-5326. [PMID: 33881042 DOI: 10.1039/d0dt04286b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and characterization of four new tetranuclear Ni(ii) complexes, C1-C4, all of which exhibit defective dicubane cores. C1-C4 are derived from the same salicylaldoxime derived ligand, H2L1. Complexes C1 and C4 have isostructural cores, differing in structure only by solvate molecules. Magnetic and computational analyses have revealed that complexes C1, C2, and C4 exhibit competing ferro- and antiferromagnetic interactions, however the different solvated species in C1 and C4 leads to notably different magnitudes in their magnetic coupling constants. Theoretical magneto-structural studies show that the pairwise magnetic exchange interaction is highly dependent on the Ni-X-Ni angle, as revealed by orbital overlap calculations.
Collapse
Affiliation(s)
- Sidney S Woodhouse
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Tyson N Dais
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Emily H Payne
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH93FJ, Scotland, UK
| | - Mukesh K Singh
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH93FJ, Scotland, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH93FJ, Scotland, UK
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
18
|
Li L, Zhao Y, Wang XG, Song WC, Huang ZG, Zhao XJ, Yang EC. The first 2,6-di(1,6-naphthyridin-2-yl)pyridine-based redox photochromic coordination polymer platform with selective vapochromism for trolamine. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00683e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The first redox photochromic coordination polymer system with photosensitive 2,6-di(1,6-naphthyridin-2-yl)pyridine ligand has been developed, exhibiting stepwise photo- and vapochromism towards UV irradiation and amino-attached vapor fumigation.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
- Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Yan Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
- Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiu-Guang Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Wei-Chao Song
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zheng-Guo Huang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiao-Jun Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
- Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - En-Cui Yang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
19
|
Quan J, Chen ZH, Zhang X, Wang JY, Zhang LY, Chen ZN. Geometrically isomeric Pt 2Ag 2 acetylide complexes of 2,6-bis(diphenylphosphino)pyridine: luminescent and vapochromic properties. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00111f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geometrically isomeric cis- and trans-Pt2Ag2 alkynyl complexes are characterized by X-ray crystallography with trans-isomers showing bright phosphorescence and interesting vaporchromic properties.
Collapse
Affiliation(s)
- Jian Quan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhong-Hui Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Xu Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Li-Yi Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|