1
|
Shen Q, Gao K, Zhao Z, Gao A, Xu Y, Wang H, Meng L, Zhang M, Dang D. Aggregation-induced emission (AIE)-active metallacycles with near-infrared emission for photodynamic therapy. Chem Commun (Camb) 2023; 59:14021-14024. [PMID: 37946537 DOI: 10.1039/d3cc04166b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Multifunctional metallacycles with solid-state emission are highly important in cancer therapy. Here, an aggregation-induced emission (AIE)-active metallacycle of DTPABT-MC-R is developed with efficient emission in the NIR region in the solid state (PLQYs = 4.92%). DTPABT-MC-R-based nanoparticles also display excellent photo-stability, and impressive photosensitive characteristics (ROS efficiency = 10.74%), finally leading to applications in cellular imaging and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Qifei Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiqin Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Anran Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
2
|
Min X, Li M, Zhang W, Li RH, Zhang Z, Wang P, Su W, Li F, Sun Y, Liu Y. Pt(II) metallacycles encapsulated by ferritin enable precise cancer combination chemo-photodynamic therapy. J Mater Chem B 2023; 11:1090-1099. [PMID: 36629819 DOI: 10.1039/d2tb02349k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different from common anti-tumor drugs, organoplatinum(II) metallacycles can integrate imaging and other therapeutic capabilities by incorporating corresponding functional donor ligands to enable potential applications in biomedicine. However, most of the emerging therapeutic agents not only show poor solubility and selectivity but also have serious side effects and unsatisfactory efficacy and encounter the tendency to develop drug resistance due to their single treatment model. Herein, an organoplatinum(II) metallacycle (PtM) was designed and synthesized using coordination-driven self-assembly via the combination of a metallic chemotherapy precursor and a reactive oxygen species generating organic precursor. The hydrophobic PtM molecules were encapsulated in the cavity of human heavy chain ferritin (HFn) during the reassembly of HFn to prepare the active targeting nanoagent HFn-PtM for use in chemo-photodynamic combination therapy. The HFn-PtM nanoagents exhibited excellent stability in buffer (pH from 5 to 7.2), alleviating the concern of drug leakage during circulation. A cellular uptake assay indicated that HFn-PtM could efficiently enter specific cells that overexpress the transferrin receptor 1. In vitro and in vivo anti-tumor investigations revealed that HFn-PtM exhibited excellent anti-tumor efficiency with negligible systemic toxicity. This work provides a strategy for the easy construction of multifunctional organoplatinum-based tumor-targeted drugs.
Collapse
Affiliation(s)
- Xuehong Min
- Wuhan Business University, Wuhan 430056, P. R. China
| | - Ming Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
| | - Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
| | - Run-Hao Li
- Key State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Weide Su
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
| | - Yue Sun
- Key State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Yi Liu
- Key State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
3
|
Han X, Yu F, Lei J, Zhu J, Fu H, Hu J, Yang XL. Pb 2+ Responsive Cu-In-Zn-S Quantum Dots With Low Cytotoxicity. Front Chem 2022; 10:821392. [PMID: 35237558 PMCID: PMC8883431 DOI: 10.3389/fchem.2022.821392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Water-soluble Cu-In-Zn-S quantum dots (CIZS QDs) with orange fluorescence have been synthesized with a glutathione (GSH) as stabilizer via facile a one-step hydrothermal method. The optimal reaction conditions of CIZS QDs including temperature, time, pH, and the molar ratios of precursors were studied. TEM results indicate that the aqueous-dispersible CIZS QDs are quasi-spherical, and the average diameters are 3.76 nm with excellent fluorescent stability. Furthermore, the cytotoxicity of CIZS QDs was investigated by the microcalorimetry combining with TEM and the IC 50 was 10.2 μM . CIZS QDs showed a promising perspective in applications such as a fluorescent probe for bioimaging and biolabeling due to the low cytotoxicity and good biocompatibility. Moreover, the CIZS QDs can distinguish Pb2+ ion from other ions, offering great potentials in lead ion determination in drinking water. According to the results of UV, XRD, FL, PL, and ITC methods, the mechanism of CIZS QDs-Pb2+ assay is due to hydrogen bonding or van der Waals forces in the formation of Pb2+ and CIZS QDs.
Collapse
Affiliation(s)
- XiaoLe Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Fan Yu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - JiaWen Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Jiahua Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - HaiYan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - JunCheng Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Long Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
4
|
Hu Y, Luo C, Gui L, Lu J, Fu J, Han X, Ma J, Luo L. Synthesis and Discovery of Schiff Base Bearing Furopyrimidinone for Selective Recognition of Zn 2+ and its Applications in Cell Imaging and Detection of Cu 2. Front Chem 2021; 9:774090. [PMID: 34912781 PMCID: PMC8666604 DOI: 10.3389/fchem.2021.774090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
A simplefuro [2,3-d]pyrimidinone-based Schiff base FPS was synthesized via aza-Wittig reaction and structure elucidation was carried out by spectroscopic studies FT-IR, 1H NMR, and 13C NMR and mass spectrometry. FPS showed weak fluorescence emission in methanol and the selectivity of FPS to different metal ions (Mn2+, Ca2+, Fe2+, Fe3+, Mg2+, Al3+, Ba2+, Ag+, Co2+, Na+, K+, Cu2+, Zn2+, Pb2+, Bi3+) were studied by absorption and fluorescence titration. The results show that FPS has selective fluorescence sensing behavior for Zn2+ ions and the limit of detection (LOD) was calculated to be 1.19 × 10–8 mol/L. Moreover, FPS-Zn2+ acts as a metal based highly selective and sensitive new chemosensor for Cu2+ ions and the LOD was calculated to be 2.25 × 10–7 mol/L. In accordance with the results and theoretical calculations, we suspected that the binding mechanisms of FPS to Zn2+ and Cu2+ were assigned to be the cooperative interaction of Zn2+(Cu2+)-N.
Collapse
Affiliation(s)
- Yanggen Hu
- Hubei Key Laboratory of Wudang Local Chinese Medicine, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Chao Luo
- Institute of Biomedicine, Hubei University of Medicine, Shiyan, China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jing Lu
- Hubei Key Laboratory of Wudang Local Chinese Medicine, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Juncai Fu
- The First Clinical College, Hubei University of Medicine, Shiyan, China
| | - Xinya Han
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Shiyan, China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Lun Luo
- Hubei Key Laboratory of Wudang Local Chinese Medicine, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Wei Z, Duan G, Huang B, Qiu S, Zhou D, Zeng J, Cui J, Hu C, Wang X, Wen L, Gao M. Rapidly liver-clearable rare-earth core-shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. J Nanobiotechnology 2021; 19:369. [PMID: 34789288 PMCID: PMC8600917 DOI: 10.1186/s12951-021-01112-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fluorescence imaging as the beacon for optical navigation has wildly developed in preclinical studies due to its prominent advantages, including noninvasiveness and superior temporal resolution. However, the traditional optical methods based on ultraviolet (UV, 200-400 nm) and visible light (Vis, 400-650 nm) limited by their low penetration, signal-to-noise ratio, and high background auto-fluorescence interference. Therefore, the development of near-infrared-II (NIR-II 1000-1700 nm) nanoprobe attracted significant attentions toward in vivo imaging. Regrettably, most of the NIR-II fluorescence probes, especially for inorganic NPs, were hardly excreted from the reticuloendothelial system (RES), yielding the anonymous long-term circulatory safety issue. RESULTS Here, we develop a facile strategy for the fabrication of Nd3+-doped rare-earth core-shell nanoparticles (Nd-RENPs), NaGdF4:5%Nd@NaLuF4, with strong emission in the NIR-II window. What's more, the Nd-RENPs could be quickly eliminated from the hepatobiliary pathway, reducing the potential risk with the long-term retention in the RES. Further, the Nd-RENPs are successfully utilized for NIR-II in vivo imaging and magnetic resonance imaging (MRI) contrast agents, enabling the precise detection of breast cancer. CONCLUSIONS The rationally designed Nd-RENPs nanoprobes manifest rapid-clearance property revealing the potential application toward the noninvasive preoperative imaging of tumor lesions and real-time intra-operative supervision.
Collapse
Affiliation(s)
- Zhuxin Wei
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Guangxin Duan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Shanshan Qiu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, 188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
6
|
Huang TH, Luo C, Zhao FZ, Zheng D, Hu QL, Jia L. Influence of different solvents on structures and electronic properties of new Fe2S2 complexes containing bis(2-diphenylphosphinophenyl)ether. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Zhang Y, Yan X, Shi L, Cen M, Wang J, Ding Y, Yao Y. Platinum(II) Metallatriangle: Construction, Coassembly with Polypeptide, and Application in Combined Cancer Photodynamic and Chemotherapy. Inorg Chem 2021; 60:7627-7631. [PMID: 33974406 DOI: 10.1021/acs.inorgchem.1c00962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of the supramolecular coordination complex with different shapes and dimensionalities lays the basis for its application in different areas. In this study, a porphyrin-based 3D organo-Pt(II) metallatriangle (MTA) was fabricated through the reported method termed as "coordination driven self-assembly". 31P NMR, 1H NMR, HR-MS, and theoretical calculation were employed to characterize the resultant MTA fully. Furthermore, the fabricated nanocomposite through coassembly of MTA and an amphiphilic polypeptide (PEG-PPT) could generate singlet oxygen (1O2) under the NIR irradiation and release a Pt drug under a low-pH microenvironment. 1O2 and the Pt drug can both damage the cancer cells, which improves the efficiency of cancer therapies. The fabrication of a Pt-porphyrin metallatriangle expands the topological structures, and the Pt-porphyrin metallatriangle can be applied to the combined cancer therapies. Moreover, various stimuli-responsive groups can be modified to the triangle, so a new method is created to develop high-performance biosupramolecular materials.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Ling Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
8
|
Sun Y, Aav R, Tsuda A, Miyake H, Hirose K, Borovkov V. Editorial: Supramolecular Chirogenesis in Chemical and Related Sciences. Front Chem 2021; 9:679332. [PMID: 33889567 PMCID: PMC8055837 DOI: 10.3389/fchem.2021.679332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, China
| | - Riina Aav
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hiroyuki Miyake
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Keiji Hirose
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|