1
|
Lin F, Luo J, Li Z, Yu G, Zhou C, Han Y, Wu J, Wang Y, Hei X, Zhou K, Xu LJ, Li J, Lin H. Photoluminescence Enhancement of 0D Organic-Inorganic Metal Halides via Aggregation-Induced Emission and Halide Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403788. [PMID: 38994674 DOI: 10.1002/smll.202403788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Indexed: 07/13/2024]
Abstract
0D organic-inorganic metal halides (OIMHs) provide unprecedented versatility in structures and photoluminescence properties. Here, a series of bluish-white emissive 0D OIMHs, (TPE-TPP)2Sb2BrxCl8-x (x = 1.16 to 8), are prepared by assembling the 1-triphenylphosphonium-4-(1,2,2-triphenylethenyl)benzene cation (TPE-TPP)+ with antimony halides anions. Based on experimental characterizations and theoretical calculations, the emission of the 0D OIMHs are attributed to the fluorescence of the organic cations with aggregation-induced emission (AIE) properties. The 0D structure minimized the molecular motion and intermolecular interactions between (TPE-TPP)+ cations, effectively suppressing the non-radiative recombination processes. Consequently, the photoluminescence quantum efficiency (PLQE) of (TPE-TPP)2Sb2Br1.16Cl6.84 is significantly enhanced to 55.4% as compared to the organic salt (TPE-TPP)Br (20.5%). The PLQE of (TPE-TPP)2Sb2BrxCl8-x can also be readily manipulated by halide substitution, due to the competitive processes between non-radiative recombination on the inorganic moiety and the energy transfer from inorganic to organic. In addition, electrically driven light-emitting diodes (LEDs) are fabricated based on (TPE-TPP)2Sb2Br1.16Cl6.84 emitter, which exhibited bluish-white emission with a maximum external quantum efficiency (EQE) of 1.1% and luminance of 335 cd m-2. This is the first report of electrically driven LED based on 0D OIMH with bluish-white emission.
Collapse
Affiliation(s)
- Fang Lin
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Jian Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Guicheng Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Chao Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Yonglei Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, China
| | - Junsheng Wu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Yongfei Wang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, China
| | - Xiuze Hei
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| | - Haoran Lin
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
2
|
Lin J, Sun N, Yao R, Liu K, Guo Z, Zhao J, Liu Q, Yuan W. White Light Emission in Zero-Dimensional Indium Hybrid with Hydrogen Bond. Inorg Chem 2024; 63:19819-19826. [PMID: 39382971 DOI: 10.1021/acs.inorgchem.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Low-dimensional organic-inorganic metal halides (OIMHs) have been explored as single-component white light emitters for applications in solid-state lighting. Herein, we report a zero-dimensional (0D) In-based OIMH (TMPDA)[InCl5(H2O)] (TMPDA = N,N,N',N'-tetramethyl-1,4-phenylenediamine), which crystallizes in the noncentrosymmetric P212121 space group and contains hydrogen bonds between the adjacent [InCl5(H2O)]2- octahedra in structure. It exhibits a large optical band gap (4.10 eV) and dual-band emission under UV light. Spectroscopic analysis and theoretical calculation indicate that the high (404 nm)- and low (513 nm)-energy emissions are attributed to the bound excitons in organic ligands and self-trapped excitons in [InCl5(H2O)]2- units, respectively. It is found that Sb doping in this 0D hybrid provides additional orange (590 nm) emission assigned to the 3P1 → 1S0 triplet radiative recombination. By adjusting the doping level, the emission color can be turned from turquoise to orange, and interestingly, a single-component white-light emission is realized by balancing the high-energy emission from organic ligand, the turquoise emission from [InCl5(H2O)]2-, and the orange one from [SbCl5(H2O)]2-. This work not only provides a new OIMH showing the single-component white light emission but also demonstrates the potential of In-based hybrids with hydrogen bonds for solid-state luminescence.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruonan Yao
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Ren Q, Zhou G, Mao Y, Zhang N, Zhang J, Zhang XM. Optical activity levels of metal centers controlling multi-mode emissions in low-dimensional hybrid metal halides for anti-counterfeiting and information encryption. Chem Sci 2024:d4sc05041j. [PMID: 39323518 PMCID: PMC11417954 DOI: 10.1039/d4sc05041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
In-depth insight into the electronic competition principles between inorganic units and organic ligands proves to be extremely challenging for controlling multi-mode emissions in low-dimensional hybrid metal halides (LHMHs). Herein, an efficient blue emission from organic ligand was engineered in (DppyH)2MCl4 (Dppy = diphenyl-2-pyridylphosphine, M = Zn2+, Cd2+) due to the reverse type I band alignment constructed by optically inert units with nd10 shell electrons. By contrast, the optically active [MnCl4]2- with semi-fully filled 3d5 shell electrons prompts the band alignment of type II, resulting in the narrowband green emission of Mn2+, along with an energy transfer from DppyH+ to [MnCl4]2-. Beyond that, the band alignment of (DppyH)SbCl4 is further reversed to type I due to the strong stereochemical activity of 5s2 lone-pair electrons, resulting in the triplet-state (3P1 → 1S0) self-trapped exciton (STE) emission of [SbCl4]-. The conclusion is that the electronic configurations of metal centers govern the optical activity levels of inorganic units, which in turn controls the multi-mode emissions by maneuvering the band alignments. This research provides an enlightening perspective on the multi-mode emissions with tunable photoluminescence and resulting electronic transitions of LHMHs, whose derived emitters can be employed in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Qiqiong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yilin Mao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Jian Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan Shanxi 030024 P. R. China
| |
Collapse
|
4
|
Mondal A, Ubaid M, Gupta S, Pal K, Bhattacharyya S. Visible-Light Photodetection by Zero-Dimensional Hybrid Indium-Halide with Minimal Structural Distortion and Reduced Band Gap. Angew Chem Int Ed Engl 2024:e202412779. [PMID: 39162626 DOI: 10.1002/anie.202412779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
Perovskite-inspired zero-dimensional (0D) hybrid halides exhibit impressive light emission properties; however, their potential in photovoltaics is hindered by the absence of interconnection between the inorganic polyhedra, leading to acute radiative recombination and insufficient charge separation. We demonstrate that incorporating closely-spaced dissimilar polyhedral units with minimal structural distortion leads to a remarkable enhancement in visible-light photodetection capability. We designed 0D C24H72N8In2Br14 (HIB) with a tetragonal crystal system, replacing the Cs+ of Cs2InBr5.H2O (CIB) with 1,6-hexanediammonium (HDA) cation. HIB comprises [InBr6]3- octahedra, and [InBr4]- tetrahedra units spaced 3.9 Å apart by the HDA linker. The [InBr4]- unit is additionally linked to HDA via intercalated bromine through hydrogen and halogen bonding interactions, respectively. This structural arrangement lowers the dielectric confinement, thereby enhancing carrier density and mobility, and increasing the diffusion coefficient compared to CIB. With 3.6 % bromine vacancy within the [InBr4]- block, mid-gap states are created, reducing the direct band gap to 2.19 eV. HIB demonstrates an unprecedently high responsivity of 9975.9±201.6 mA W-1 under 3 V potential bias at 485 nm wavelength, among low-dimensional hybrid halides. In the absence of potential bias, the self-powered photodetection parameters are 81.2±3.0 mA W-1 and (6.98±0.21)×109 Jones.
Collapse
Affiliation(s)
- Anamika Mondal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Mohammad Ubaid
- Department of Physics, Indian Institute of Technology, Kanpur (IIT Kanpur), Uttar Pradesh, India
| | - Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Koushik Pal
- Department of Physics, Indian Institute of Technology, Kanpur (IIT Kanpur), Uttar Pradesh, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Shamla AB, Sarma D, Kumar Das D, Anilkumar V, Bakthavatsalam R, Mahata A, Kundu J. Discerning the Structure-Photophysical Property Correlation in Zero-Dimensional Antimony(III)-Doped Indium(III) Halide Hybrids. J Phys Chem Lett 2024; 15:8224-8232. [PMID: 39102307 DOI: 10.1021/acs.jpclett.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Zero-dimensional (0D) metal halide hybrids incorporating optically emissive Sb3+ dopants have received huge research attention as a result of dopant-based visible emission for lighting and scintillation applications. Indeed, there have been a plethora of reports on Sb3+ doping of indium halide (In-X)-based 0D hybrids that show strong dopant emission with varied emission wavelengths (λem) and photoluminescence quantum yields (PLQYs). However, discerning the structure-luminescence relation in these 0D-doped hybrids remains challenging because it necessitates exquisite synthetic control on the local metal (dopant) halide geometry/site asymmetry. Demonstrated here is synthetic control that allows tuning of the local metal halide geometry of the Sb3+ dopants in 0D In-X hybrids utilizing five different organic cations. Experimental analysis of the series of Sb3+-doped In-X hybrids reveals a strong correlation between the extent of local metal halide geometry distortion and their photophysical properties (λem and PLQY). Density functional theory calculations of the doped compounds, characterizing ground- and excited-state structural distortions and energetics, reveal the origin of the extent of luminescence behavior. The experimental-computational results reported herein unravel the operative structure-luminescence relation in 0D Sb3+-doped In-X hybrids, provide insight into the emission mechanism, and open up avenues toward rational synthesis of strongly emissive materials with desired emission color for targeted applications.
Collapse
Affiliation(s)
- Alisha Basheer Shamla
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Dhritismita Sarma
- Indian Institute of Technology Hyderabad Sangareddy, Kandi, Telangana 502284, India
| | - Deep Kumar Das
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Vishnu Anilkumar
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | | | - Arup Mahata
- Indian Institute of Technology Hyderabad Sangareddy, Kandi, Telangana 502284, India
| | - Janardan Kundu
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
6
|
Hazra V, Mandal A, Bhattacharyya S. Optoelectronic insights of lead-free layered halide perovskites. Chem Sci 2024; 15:7374-7393. [PMID: 38784758 PMCID: PMC11110173 DOI: 10.1039/d4sc01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Two-dimensional organic-inorganic halide perovskites have emerged as promising candidates for a multitude of optoelectronic technologies, owing to their versatile structure and electronic properties. The optical and electronic properties are harmoniously integrated with both the inorganic metal halide octahedral slab, and the organic spacer layer. The inorganic octahedral layers can also assemble into periodically stacked nanoplatelets, which are interconnected by the organic ammonium cation, resulting in the formation of a superlattice or superstructure. In this perspective, we explore the structural, electronic, and optical properties of lead-free hybrid halides, and the layered halide perovskite single crystals and nanostructures, expanding our understanding of the diverse applications enabled by these versatile structures. The optical properties of the layered halide perovskite single crystals and superlattices are a function of the organic spacer layer thickness, the metal center with either divalent or a combination of monovalent and trivalent cations, and the halide composition. The distinct absorption and emission features are guided by the structural deformation, electron-phonon coupling, and the polaronic effect. Among the diverse optoelectronic possibilities, we have focused on the photodetection capability of layered halide perovskite single crystals, and elucidated the descriptors such as excitonic band gap, effective mass, carrier mobility, Rashba splitting, and the spin texture that decides the direct component of the optical transitions.
Collapse
Affiliation(s)
- Vishwadeepa Hazra
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Arnab Mandal
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
7
|
Qin JP, Hu CA, Lin CQ, Pan CY. Lead-free Perovskite with Distorted [InX 6] 3- Octahedron Induced by Organic Cation and Enhanced PLQY by Sb Doping. Inorg Chem 2024; 63:8764-8774. [PMID: 38686432 DOI: 10.1021/acs.inorgchem.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In-based halide perovskites have attracted a lot of attention because of their unique broadband emission properties. Herein, a series of In-based hybrid perovskites of (H2MP)2InCl7·H2O (1), (H2EP)2InCl7·H2O (2), (H2MP)2InBr7·H2O (3), and (H2EP)2InBr7·H2O (4) were synthesized under the control of halogen ions and organic cations. 1, 2, and 4 exhibit obvious photoluminescence properties with peaks at 392, 442, and 652 nm, respectively. The effects of the different components on the crystal structure and photoluminescence properties are discussed by calculating the structural distortion of the [InX6]3- octahedron. The photoluminescence properties of 1 and 4 were significantly improved after Sb3+ doping with PLQY values of 57.12 and 41.53%. Finally, a white LED was successfully fabricated with the two doped compounds coated onto the 365 nm blue LED chip.
Collapse
Affiliation(s)
- Jian-Peng Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Cheng-An Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chang-Qing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chun-Yang Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| |
Collapse
|
8
|
Tian Y, Wei Q, Duan L, Peng C. Boosting Blue Self-Trapped Exciton Emission in All-Inorganic Zero-Dimensional Metal Halide Cs 2ZnCl 4 via Zirconium (IV) Doping. Molecules 2024; 29:1651. [PMID: 38611931 PMCID: PMC11013416 DOI: 10.3390/molecules29071651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Low-dimensional metal halides with efficient luminescence properties have received widespread attention recently. However, nontoxic and stable low-dimensional metal halides with efficient blue emission are rarely reported. We used a solvothermal synthesis method to synthesize tetravalent zirconium ion-doped all-inorganic zero-dimensional Cs2ZnCl4 for the first time. Bright blue emission in the range of 370 nm-700 nm with a emission maximum at 456 nm was observed in Zr4+:Cs2ZnCl4 accompanied by a large Stokes shift, which was due to self-trapped excitons (STEs) caused by the lattice vibrations of the twisted structure. Simultaneously, the PLQY of Zr4+:Cs2ZnCl4 achieve an impressive 89.67%, positioning it as a compelling contender for future applications in blue-light technology.
Collapse
Affiliation(s)
- Ye Tian
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China;
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lian Duan
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China;
| | - Chengyu Peng
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China;
| |
Collapse
|
9
|
Tang H, Zheng P, Xiao Z, Yuan K, Zhang H, Zhao X, Zhou W, Wang S, Liu W. Crystal Structure and Optical Properties Characterization in Quasi-0D Lead-Free Bromide Crystals (C 6H 14N) 3Bi 2Br 9·H 2O and (C 6H 14N) 3Sb 3Br 12. Inorg Chem 2024; 63:4747-4757. [PMID: 38412230 DOI: 10.1021/acs.inorgchem.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Low dimensional organic inorganic metal halide materials have shown broadband emission and large Stokes shift, making them widely used in various fields and a promising candidate material. Here, the zero-dimensional lead-free bromide single crystals (C6H14N)3Bi2Br9·H2O (1) and (C6H14N)3Sb3Br12 (2) were synthesized. They crystallized in the monoclinic crystal system with the space group of P21 and P21/n, respectively. Through ultraviolet-visible-near-infrared (UV-vis-NIR) absorption analysis, the band gaps of (C6H14N)3Bi2Br9·H2O and (C6H14N)3Sb3Br12 are found to be 2.75 and 2.83 eV, respectively. Upon photoexcitation, (C6H14N)3Bi2Br9·H2O exhibit broad-band red emission peaking at 640 nm with a large Stokes shift of 180 nm and a lifetime of 2.94 ns, and the emission spectrum of (C6H14N)3Sb3Br12 are similar to those of (C6H14N)3Bi2Br9·H2O. This exclusive red emission is ascribed to the self-trapping exciton transition caused by lattice distortion, which is confirmed through both experiments and first-principles calculations. In addition, due to the polar space group structure and the large spin-orbit coupling (SOC) associated with the heavy elements of Bi and Br of crystal 1, an obvious Rashba effect was observed. The discovery of organic inorganic metal bromide material provides a critical foundation for uncovering the connection between 0D metal halide materials' structures and properties.
Collapse
Affiliation(s)
- Hao Tang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Pengfei Zheng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Zhifeng Xiao
- College of Physics and Material Science, Tianjin Normal University, Tianjin 300074, China
| | - Kejia Yuan
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Hanwen Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaochen Zhao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyu Wang
- College of Physics and Material Science, Tianjin Normal University, Tianjin 300074, China
| | - Weifang Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Li DY, Kang HY, Liu YH, Zhang J, Yue CY, Yan D, Lei XW. A 0D hybrid lead-free halide with near-unity photoluminescence quantum yield toward multifunctional optoelectronic applications. Chem Sci 2024; 15:953-963. [PMID: 38239673 PMCID: PMC10793591 DOI: 10.1039/d3sc05245a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Zero-dimensional (0D) hybrid metal halides have emerged as highly efficient luminescent materials, but integrated multifunction in a structural platform remains a significant challenge. Herein, a new hybrid 0D indium halide of (Im-BDMPA)InCl6·H2O was designed as a highly efficient luminescent emitter and X-ray scintillator toward multiple optoelectronic applications. Specifically, it displays strong broadband yellow light emission with near-unity photoluminescence quantum yield (PLQY) through Sb3+ doping, acting as a down-conversion phosphor to fabricate high-performance white light emitting diodes (WLEDs). Benefiting from the high PLQY and negligible self-absorption characteristics, this halide exhibits extraordinary X-ray scintillation performance with a high light yield of 55 320 photons per MeV, which represents a new scintillator in 0D hybrid indium halides. Further combined merits of a low detection limit (0.0853 μGyair s-1), ultra-high spatial resolution of 17.25 lp per mm and negligible afterglow time (0.48 ms) demonstrate its excellent application prospects in X-ray imaging. In addition, this 0D halide also exhibits reversible luminescence off-on switching toward tribromomethane (TBM) but fails in any other organic solvents with an ultra-low detection limit of 0.1 ppm, acting as a perfect real-time fluorescent probe to detect TBM with ultrahigh sensitivity, selectivity and repeatability. Therefore, this work highlights the multiple optoelectronic applications of 0D hybrid lead-free halides in white LEDs, X-ray scintillation, fluorescence sensors, etc.
Collapse
Affiliation(s)
- Dong-Yang Li
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Huai-Yuan Kang
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| | - Yu-Hang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
11
|
Wu Y, Zhen XM, Zhang B. Antimony-Triggered Tunable White Light Emission in Lead-Free Zero-Dimensional Indium Halide with Ultrastable CCT of White Light Emitting Diodes. Inorg Chem 2023; 62:19573-19581. [PMID: 37970628 DOI: 10.1021/acs.inorgchem.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A highly efficient and easily tunable luminescence is significant for solid-state luminescent (SSL) materials. However, achieving a photoluminescence quantum yield (PLQY) close to unity and tuning the emission remain challenging tasks. Metal doping strategies enable resolution of these issues. Herein, we report the preparation of a novel organic-inorganic lead-free indium-based metal halide hybrid (MP)3InCl6•EtOH (MP = C4H10ON) with a typical zero-dimension structure. When excited at 320 nm, (MP)3InCl6•EtOH exhibits a dual emission band at 420 and 600 nm, which originates from the organic cation [MP] and the [InCl6]3- octahedral unit. The photoluminescence can be significantly enhanced through Sb3+ doping, resulting in an increase in PLQY from 0.78% to near unity. Multiple emission color tunings have been achieved by regulating the Sb doping level and the radiation wavelength, resulting in a change in emission color from blue → white → orange. Optical characterizations reveal that the significantly enhanced emission centered at 600 nm can be attributed to more efficient absorption, closely associated with an additional 1S0 → 3P1 transition in the inorganic octahedron [In(Sb)Cl6]3- due to Sb3+ doping. With its excellent optical performance, a white light emitting diode (WLED) has been successfully fabricated by coating the mixture of (MP)3InCl6•EtOH:15%Sb3+ with blue phosphor BaMgAl10O17:Eu2+ onto a UV LED chip. The WLED device exhibits perfect white light emission with regard to the International Commission on Illumination (CIE) coordinates of (0.36, 0.34). Significantly, the WLED device maintains a stable correlated color temperature (CCT) range of 4119-4393 K and CIE coordinates (x: 0.37-0.34, y: 0.35-0.33) as the driven current varies from 20 to 200 mA, demonstrating outstanding stability across different power levels. This work not only presents a novel system for achieving remarkably enhanced luminescent performance and tuning emission bands in 0D metal halides but also represents a significant step toward achieving resistance to color drifting for stable WLEDs.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiao-Meng Zhen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
12
|
Lin HW, Lin YP, Huang DD, Chen ZH, Peng YC, Wang ZP, Du KZ, Huang XY. Supramolecular-Interactions-Modulated Photoluminescence in Indium Bromide-Based Isomers. Inorg Chem 2023; 62:18331-18337. [PMID: 37910803 DOI: 10.1021/acs.inorgchem.3c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/β (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.
Collapse
Affiliation(s)
- Hao-Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yang-Peng Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Dan-Dan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhi-Hua Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ke-Zhao Du
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Hou A, Fan L, Xiong Y, Lin J, Liu K, Chen M, Guo Z, Zhao J, Liu Q. Zero-Dimensional Halides with ns 2 Electron (Sb 3+) Activation to Generate Broad Photoluminescence. Inorg Chem 2023. [PMID: 37478468 DOI: 10.1021/acs.inorgchem.3c01726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Organic-inorganic metal halides (OIMHs) have various crystal structures and offer excellent semiconducting properties. Here, we report three novel OIMHs, (PPA)6InBr9 (PPA = [C6H5(CH2)3NH3]+), (PBA)2SbBr5, and (PBA)2SbI6 (PBA = [C6H5(CH2)4NH3]+), showing typical zero-dimensional (0D) structure, octahedra dimers, and corner-sharing one-dimensional chains and crystallized in the monoclinic system with P21, P21/c, and C2/c space groups, respectively. (PPA)6InBr9, (PBA)2SbBr5, and (PBA)2SbI6 have experimental optical band gaps of ∼3.16, ∼2.24, and 1.48 eV, respectively. (PPA)6InBr9 exhibits bright-orange light emission centered at 642 nm with a full-width at half-maximum of 179 nm (0.51 eV) and a Stokes shift of 277 nm (1.46 eV). After Sb3+ doping, the peak position did not change, and the photoluminescence quantum yield increased significantly from 9.2 to 53.0%. The efficient emission of Sb:(PPA)6InBr9 stems from the isolated ns2 luminescent center and strong electron-phonon coupling, making the spin-forbidden 3P1-1S0 observable. By combining commercial blue and green phosphors with orange-red-light-emitting (PPA)6In0.99Sb0.01Br9, a white-light-emitting diode was constructed, with the color-rendering index reaching up to 92.3. Our work highlights three novel 0D OIMHs, with chemical doping of Sb3+ shown to significantly enhance the luminescence properties, demonstrating their potential applications in solid-state lighting.
Collapse
Affiliation(s)
- An Hou
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Xiong
- State Key Laboratory of HVDC (Electric Power Research Institute, China Southern Power Grid), Guangzhou, Guangdong Province 510663, China
| | - Jiawei Lin
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingyue Chen
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Hu Q, Liu J, Yu H, Xu H, Yu J, Wu W. Photophysical properties of tetrabutylammonium metal chlorides with different inorganic frameworks. Chem Commun (Camb) 2023; 59:3763-3766. [PMID: 36912190 DOI: 10.1039/d2cc06988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The luminescence of single crystals of (TBA)PbCl3, (TBA)2Sb2Cl8, (TBA)3Bi2Cl9 and (TBA)SnCl5·2EtOH (TBA = tetrabutylammonium, EtOH = Ethanol) synthsized were assigned distinctively to the centres of self-trapped excitons (STEs), TBA+, TBA+ and co-emission of STEs and TBA+. This work demonstrates that organic cations without benzene or aromatic rings can also be used as the sole luminescence centres for metal halides.
Collapse
Affiliation(s)
- Qichuan Hu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang, 150080, China.
| | - Jing Liu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang, 150080, China.
| | - Hailong Yu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang, 150080, China.
| | - Hanqi Xu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang, 150080, China.
| | - Jinyang Yu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang, 150080, China.
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, Heilongjiang, 150080, China.
| |
Collapse
|
15
|
Sun N, Lin J, He S, Cao J, Guo Z, Zhao J, Liu Q, Yuan W. High-Efficiency Intrinsic Yellow-Orange Emission in Hybrid Indium Bromide with Double Octahedral Configuration. Inorg Chem 2023; 62:3018-3025. [PMID: 36752343 DOI: 10.1021/acs.inorgchem.2c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zero-dimensional (0D) In-based organic-inorganic metal halides (OIMHs) have received growing interest in recent years as promising luminescent materials. However, the high efficiencies of 0D In-based OIMHs are all dependent on Sb doping in the existing literature. Here, we report a novel 0D In-based OIMH (C10H22N2)2In2Br10, which exhibits intrinsic broadband emission (610 nm), and the photoluminescence quantum yield (PLQY) can reach 70% without Sb doping. (C10H22N2)2In2Br10 shows a typical 0D structure with three different In-Br polyhedra (two octahedra and one tetrahedron) separated by large organic cations. Based on the optical property measurements and theoretical calculations, we demonstrate that (C10H22N2)2In2Br10 is an indirect semiconductor with a band gap of 3.74 eV, and the In-Br inorganic moiety is primarily responsible for the intense emission of (C10H22N2)2In2Br10. Interestingly, the unique double octahedral configuration in (C10H22N2)2In2Br10 may enhance the structural distortion and stimulate the self-trapped excitons (STEs), leading to the related high PLQY. Our work provides a novel 0D In-based OIMH with high-efficiency intrinsic emission, which is helpful for understanding the structure-PL relationships of hybrid halides.
Collapse
Affiliation(s)
- Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
16
|
Hao LY, Xu X, Yan CC, Xie HH, Wang FM, Yan SH, Tang SF. Blue-Emitting Zero-Dimensional Inorganic-Organic Hybrids Constructed from Beta-Diketonate Ligands and Bulky Organic Cations. Inorg Chem 2023; 62:2236-2243. [PMID: 36689619 DOI: 10.1021/acs.inorgchem.2c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two zero-dimensional inorganic-organic hybrids, namely, [C4mim][Cd(TCDPPA)3] (1) and [C4mpy][Cd(TCDPPA)3] (2), where (TCDPPA)- = 2,2,2-trichloro-N-(di(pyrrolidin-1-yl)phosphoryl)acetamide, (C4mim)+ = 1-butyl-3-methylimidazolium, and (C4mpy)+ = 1-butyl-4-methylpyridinium, have been synthesized via metathesis reactions and characterized systematically. These ionic cadmium-containing inorganic-organic hybrid compounds are assembled from a bulky organic cation and a complex anion constructed from the chelation of three TCDPPA ligands to one cadmium ion. These compounds possess wide band gaps and emit in the deep-blue region intensely with a quantum yield as high as 34.04%. The success of this work provides a new method for the design and fabrication of high-efficiency blue-emitting materials.
Collapse
Affiliation(s)
- Li-Ying Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Xiuling Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Chong-Chong Yan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Fu-Min Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Shi-Hai Yan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| |
Collapse
|
17
|
Organic-inorganic interface chemistry for sustainable materials. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
This mini-review focuses on up-to-date advances of hybrid materials consisting of organic and inorganic components and their applications in different chemical processes. The purpose of forming such hybrids is mainly to functionalize and stabilize inorganic supports by attaching an organic linker to enhance their performance towards a target application. The interface chemistry is present with the emphasis on the sustainability of their components, chemical changes in substrates during synthesis, improvements of their physical and chemical properties, and, finally, their implementation. The latter is the main sectioning feature of this review, while we present the most prosperous applications ranging from catalysis, through water purification and energy storage. Emphasis was given to materials that can be classified as green to the best in our consideration. As the summary, the current situation on developing hybrid materials as well as directions towards sustainable future using organic-inorganic hybrids are presented.
Collapse
|
18
|
Temerova D, Chou TC, Kisel KS, Eskelinen T, Kinnunen N, Jänis J, Karttunen AJ, Chou PT, Koshevoy IO. Hybrid Inorganic–Organic Complexes of Zn, Cd, and Pb with a Cationic Phenanthro-diimine Ligand. Inorg Chem 2022; 61:19220-19231. [DOI: 10.1021/acs.inorgchem.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Diana Temerova
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kristina S. Kisel
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, Aalto 00076, Finland
| | - Niko Kinnunen
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science, Aalto University, Aalto 00076, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Igor O. Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| |
Collapse
|
19
|
Panda DP, Swain D, Chaudhary M, Mishra S, Bhutani G, De AK, Waghmare UV, Sundaresan A. Electron-Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium) 6Mn 3X 12 (X = Cl and Br). Inorg Chem 2022; 61:17026-17036. [PMID: 36242586 DOI: 10.1021/acs.inorgchem.2c01581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a large Stokes shift and broad emission band in a Mn-based organic-inorganic hybrid halide, (guanidinium)6Mn3Br12 [GuMBr], consisting of trimeric units of distorted MnBr6 octahedra representing a zero-dimensional compound with a liquid like crystalline lattice. Analysis of the photoluminescence (PL) line width and Raman spectra reveals the effects of electron-phonon coupling, suggestive of the formation of Frenkel-like bound excitons. These bound excitons, regarded as the self-trapped excitons (STEs), account for the large Stokes shift and broad emission band. The excited-state dynamics was studied using femtosecond transient absorption spectroscopy, which confirms the STE emission. Further, this compound is highly emissive with a PL quantum yield of ∼50%. With chloride ion incorporation, we observe enhancement of the emissive properties and attribute it to the effects of intrinsic quantum confinement. Localized electronic states in flat bands lining the gap and their strong coupling with phonons are confirmed with first-principles calculations.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Mohit Chaudhary
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Samita Mishra
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - A Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| |
Collapse
|
20
|
Herrera S, Rivero KI, Guzmán A, Cedeño J, Miksovska J, Raptis RG. Mononuclear, hexanuclear and polymeric indium(III) pyrazolido complexes; structural characterization, dynamic solution studies and luminescent properties. Dalton Trans 2022; 51:14277-14286. [PMID: 36069270 DOI: 10.1039/d2dt01901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of six mononuclear indium(III) complexes of formula mer-[InIIICl3(pz*H)3]-pz*H = pyrazole (pzH), or substituted pyrazoles: 4-Cl-pzH, 4-Br-pzH, 4-I-pzH, 4-Ph-pzH and 3,5-Me2-pzH-were synthesized by addition reactions of InCl3 and pz*H and crystallographically characterized. The fluxional behaviour of the complexes, probed by variable temperature 1H NMR spectroscopy in the 328 K to 173 K range, was attributed to (at least) four simultaneous processes: pyrazole N-H proton dissociation/association, cis/trans-pyrazole exchange, and N1/N2 tautomerization of the cis- and of the trans-pyrazoles. Three novel trianionic hexanuclear complexes of general formula (pipH)3[In6Cl6(μ3-OH0.5)2(μ-OH)6(μ-pz*)6]-pz* = pz, 4-Cl-pz and 4-Ph-pz-showing μ-hydroxo and μ-oxo bridges were synthesized from the corresponding mer-[InIIICl3(pz*H)3] and characterized by single crystal X-ray diffraction and 1H NMR. Under different solvent conditions, multicolour emitting polymeric complexes of general formula [In(μ-pz*)3]n-pz* = pz, 4-Cl-pz, 4-I-pz and 4-Ph-pz-were obtained also from mer-[InIIICl3(pz*H)3] after addition of a base. Luminescence and lifetime calculations were performed for all polymers formed.
Collapse
Affiliation(s)
- Susana Herrera
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| | - Kennett I Rivero
- Department of Chemistry, University of Puerto Rico, PR 00984, USA
| | - Alexis Guzmán
- Department of Chemistry, University of Puerto Rico, PR 00984, USA
| | - Jonathan Cedeño
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| | - Raphael G Raptis
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
21
|
Zhang Z, Fattal H, Creason TD, Amiri M, Roseborough A, Gilley IW, Nyman M, Saparov B. Investigation of the Solution Chemistry of Hybrid Organic-Inorganic Indium Halides for New Material Discovery. Inorg Chem 2022; 61:13015-13021. [PMID: 35944017 DOI: 10.1021/acs.inorgchem.2c01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, metal halide perovskites (MHPs) have emerged as a new class of materials for optical and electronic applications such as solar cells and ionizing radiation detectors. Although the solution-processability of MHPs is among their greatest advantages, the solution chemistries of most metal halide systems and their relationship with the observed structural and chemical diversity are poorly understood. In this work, we study the solution chemistry of a model indium halide system, methylammonium (MA)-In-Br, using a combination of the UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS) measurements, small-angle X-ray scattering (SAXS), and density functional theory (DFT) calculations. Our results show that indium could form either octahedral [InBr63-] or tetrahedral [InBr4-] anions in solution or a combination of both, depending on the loading ratios of MABr and InBr3 reactants. Understanding the solution chemistry of this system and recognizing the optical fingerprints of these polyanions allow for targeted crystallization of two novel compounds: MAInBr4 featuring tetrahedral [InBr4-] anions and MA2InBr5 containing both octahedral [InBr63-] and tetrahedral [InBr4-] anions. Further increase of the MABr content leads to the formation of previously reported MA4InBr7, containing only octahedral [InBr63-] anions separated by Br- anions. Our results suggest that understanding the solution chemistry of multinary metal halide systems could be a valuable tool for discovering functional materials for practical applications.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Hadiah Fattal
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Tielyr D Creason
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Alexander Roseborough
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Isaiah W Gilley
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Bayram Saparov
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
22
|
Panda DP, Swain D, Sundaresan A. Zero-Dimensional (Piperidinium) 2MnBr 4: Ring Puckering-Induced Isostructural Transition and Strong Electron-Phonon Coupling-Mediated Self-Trapped Exciton Emission. Inorg Chem 2022; 61:11377-11386. [PMID: 35820065 DOI: 10.1021/acs.inorgchem.2c01601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report on the synthesis, structure, and photophysical properties of a lead-free organic-inorganic hybrid halide, (Piperidinium)2MnBr4 (PipMBr). It crystallizes in a monoclinic P21/n structure, with isolated MnBr4 tetrahedra representing a zero-dimensional compound. It undergoes a reversible isostructural transition at 422/417 K in the heating/cooling cycle owing to the hydrogen-bonding rearrangement mediated by ring puckering of piperidinium cations. This compound exhibits green emission with a photoluminescence quantum yield of 51%. Interestingly, strong electron-longitudinal optical phonon coupling with γLO of 237 meV is evidenced from the broadening of the temperature-dependent emission linewidth and the Raman spectrum. Such strong electron-phonon coupling and a relatively low Debye temperature (137 K) suggest the self-trapped exciton emission in this compound.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar 751013, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
23
|
A Zero-Dimensional Organic Lead Bromide of (TPA)2PbBr4 Single Crystal with Bright Blue Emission. NANOMATERIALS 2022; 12:nano12132222. [PMID: 35808057 PMCID: PMC9268179 DOI: 10.3390/nano12132222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022]
Abstract
Blue-luminescence materials are needed in urgency. Recently, zero-dimensional (0D) organic metal halides have attractive much attention due to unique structure and excellent optical properties. However, realizing blue emission with near-UV-visible light excitation in 0D organic metal halides is still a great challenge due to their generally large Stokes shifts. Here, we reported a new (0D) organic metal halides (TPA)2PbBr4 single crystal (TPA+ = tetrapropylammonium cation), in which the isolated [PbBr4]2− tetrahedral clusters are surrounded by organic ligand of TPA+, forming a 0D framework. Upon photoexcitation, (TPA)2PbBr4 exhibits a blue emission peaking at 437 nm with a full width at half-maximum (FWHM) of 50 nm and a relatively small Stokes shift of 53 nm. Combined with density functional theory (DFT) calculations and spectral analysis, it is found that the observed blue emission in (TPA)2PbBr4 comes from the combination of free excitons (FEs) and self-trapped exciton (STE), and a small Stokes shift of this compound are caused by the small structure distortion of [PbBr4]2− cluster in the excited state confined by TPA molecules, in which the multi-phonon effect take action. Our results not only clarify the important role of excited state structure distortion in regulating the STEs formation and emission, but also focus on 0D metal halides with bright blue emission under the near-UV-visible light excitation.
Collapse
|
24
|
Ma YY, Fu HQ, Liu XL, Sun YM, Zhong QQ, Xu WJ, Lei XW, Liu GD, Yue CY. Zero-Dimensional Organic–Inorganic Hybrid Indium Chlorides with Intrinsic Blue Light Emissions. Inorg Chem 2022. [DOI: 10.1021/acs.inorgchem.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue-Yu Ma
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
| | - Han-Qi Fu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Xue-Lei Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Yu-Ming Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Qian-Qian Zhong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Wen-Jie Xu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Guo-Dong Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, People’s Republic of China
| |
Collapse
|
25
|
Zhang X, Jiang X, Liu K, Fan L, Cao J, He S, Wang N, Zhao J, Lin Z, Liu Q. Small Organic Molecular-Based Hybrid Halides with High Photoluminescence Quenching Temperature. Inorg Chem 2022; 61:7560-7567. [PMID: 35503095 DOI: 10.1021/acs.inorgchem.2c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic-inorganic metal halides (OIMHs) exhibit excellent photoelectric properties; however, their high-temperature light-emission stability requires further improvement. Here, we report three isostructural OIMHs (C2H8N)4InCl7, (C2H8N)4SbCl7, and (C2H8N)4SbBr7 (C2H8N+ = dimethylammonium). They are all crystallized in the P21212 space group with a zero-dimensional (0D) structure, with orange-red photoluminescence (PL) under 365 nm UV excitation. Among them, (C2H8N)4InCl7 exhibits the strongest PL with a photoluminescence quantum yield (PLQY) of 13.9% at room temperature. Optical property measurements and density functional theory unveil that the luminescence of (C2H8N)4InCl7 at 405 and 620 nm is due to free exciton and self-trapped exciton emission, respectively. It is worth noting that (C2H8N)4InCl7 shows a high PL quenching temperature, maintaining 50% of its room-temperature PL intensity at 425 K, which is rare in OIHMs. This is much higher than the application temperature of phosphors in practical solid-state lighting applications (363-383 K). In this temperature range, the luminous intensity of (C2H8N)4InCl7 exceeds 60% of that at room temperature. The high PL quenching temperature observed in (C2H8N)4InCl7 indicates the potential of OIMHs for applications in phosphor-converted light-emitting diodes.
Collapse
Affiliation(s)
- Xusheng Zhang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xingxing Jiang
- Center for Crystal Research and Development, Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29, Zhong Guan Cun Dong Lu, Beijing 100190, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - ZheShuai Lin
- Center for Crystal Research and Development, Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29, Zhong Guan Cun Dong Lu, Beijing 100190, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
26
|
Luo Z, Liu Y, Liu Y, Li C, Li Y, Li Q, Wei Y, Zhang L, Xu B, Chang X, Quan Z. Integrated Afterglow and Self-Trapped Exciton Emissions in Hybrid Metal Halides for Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200607. [PMID: 35233840 DOI: 10.1002/adma.202200607] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
0D hybrid metal halides (0D HMHs) are considered to be promising luminescent emitters. 0D HMHs commonly exhibit self-trapped exciton (STE) emissions originating from the inorganic metal halide anion units. Exploring and utilizing the emission features of the organic cation units in 0D HMHs is highly desired to enrich their optical properties as multifunctional luminescent materials. Here, tunable emissions from organic and inorganic units are successfully achieved in triphenylsulfonium (Ph3 S+ )-based 0D HMHs. Notably, integrated afterglow and STE emissions with adjustable intensities are obtained in (Ph3 S)2 Sn1- x Tex Cl6 (x = 0-1) via the delicate combination of [SnCl6 ]2- and [TeCl6 ]2- . Moreover, such a strategy can be readily extended to develop other HMH materials with intriguing optical properties. As a demonstration, 0D (Ph3 S)2 Zn1- x Mnx Cl4 (x = 0-1) are constructed to achieve integrated afterglow and Mn2+ d-d emissions with high efficiency. Consequently, these novel 0D HMHs with colorful afterglow and STE emissions are applied in multiple anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yejing Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qian Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Liming Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Xu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
27
|
Crystal structure and optical properties of in situ synthesized organic-inorganic hybrid metal halides. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Owczarek M, Lee M, Zapf V, Nie W, Jakubas R. Accessing One-Dimensional Chains of Halogenoindates(III) in Organic-Inorganic Hybrids. Inorg Chem 2022; 61:5469-5473. [PMID: 35343233 DOI: 10.1021/acs.inorgchem.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic-inorganic hybrids of halogenoindates(III) are typically represented by one of the zero-dimensional units: InX4-, InX52-, InX63-, or In2X115-. Higher dimensional anionic forms, although not forbidden, have remained almost elusive. Here we report for the first time In3+-based organic-inorganic hybrids, (C4H5N2S)2InCl5 and (C4H5N2S)2InBr5, with 1D anionic chains of trans-halide-bridged InX6 octahedra whose formation is guided by 2-mercaptopyrimidinium cations (C4H5N2S+). The chains are characterized by the significant ease of deformation, which is reflected in the elongation of the bridging bonds or the displacement of In3+ ions. The materials show a robust band gap predominantly governed by C4H5N2S+ cations. Dielectric relaxation processes in (C4H5N2S)2InBr5 arise from the cations' dynamics and suggest the ability of the brominated system to accommodate even larger cations. Our work represents a successful attempt to expand the structural diversity of halogenoindates(III) and opens a pathway to reach multifunctional 1D In3+-based hybrids.
Collapse
Affiliation(s)
- Magdalena Owczarek
- Materials and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Minseong Lee
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Vivien Zapf
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wanyi Nie
- Materials and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wroclaw, F. Joliot Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
29
|
|
30
|
Lin J, Liu K, Ruan H, Sun N, Chen X, Zhao J, Guo Z, Liu Q, Yuan W. Zero-Dimensional Lead-Free Halide with Indirect Optical Gap and Enhanced Photoluminescence by Sb Doping. J Phys Chem Lett 2022; 13:198-207. [PMID: 34967650 DOI: 10.1021/acs.jpclett.1c03649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three new lead-free organic-inorganic metal halides (OIMHs) (C7H8N3)3InX6·H2O (X = Cl, Br) and (C7H8N3)2SbBr5 were synthesized. First-principles calculations indicate that the highest occupied molecular orbitals (HOMOs) of the two In-based OIMHs are constituted of π orbitals from [C7H8N3]+ spacers. (C7H8N3)3InX6·H2O (X = Cl, Br) shows an indirect optical gap, which may result from this organic-contributed band edge. Despite the indirect-gap nature with extra phonon process during absorption, the photoluminescence of (C7H8N3)3InBr6·H2O can still be significantly enhanced through Sb doping, with the internal photoluminescence quantum yields (PLQY) increased 10-fold from 5% to 52%. A white light-emitting diode (WLED) was fabricated based on (C7H8N3)3InBr6·H2O:Sb3+, exhibiting a high color-rendering index of 90. Our work provides new systems to deeply understand the principles for organic spacer choice to obtain the 0D metal OIMHs with specific band structure and also the significant enhancement of luminescence performance by chemical doping.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Ruan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
McWhorter TM, Zhang Z, Creason TD, Thomas L, Du M, Saparov B. (C
7
H
11
N
2
)
2
MBr
4
(M=Cu, Zn): X‐Ray Sensitive 0D Hybrid Metal Halides with Tunable Broadband Emission. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy M. McWhorter
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Zheng Zhang
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Tielyr D. Creason
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Leonard Thomas
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| | - Mao‐Hua Du
- Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Bayram Saparov
- Department of Chemistry & Biochemistry University of Oklahoma Norman OK 73019-5251 USA
| |
Collapse
|
32
|
Creason TD, Fattal H, Gilley IW, Evans BN, Jiang J, Pachter R, Glatzhofer DT, Saparov B. Stabilized photoemission from organic molecules in zero-dimensional hybrid Zn and Cd halides. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01293f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This work explores the utilization of a photoactive organic cation for the preparation of R2MCl4 (M = Zn, Cd; R = (E)-4-styrylpyridinium, C13H12N+).
Collapse
Affiliation(s)
- Tielyr D. Creason
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Hadiah Fattal
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Isaiah W. Gilley
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Brett N. Evans
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Jie Jiang
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, USA
| | - Daniel T. Glatzhofer
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| | - Bayram Saparov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA
| |
Collapse
|
33
|
Jin JC, Zhuang TH, Lin YP, Lin BY, Jiang J, Du KZ, Huang XY. Ionic indium(III) chloride hybrids incorporating a 2,2'-bipyrimidine ligand: studies on photoluminescence and structural transformation. Dalton Trans 2021; 50:16406-16413. [PMID: 34734938 DOI: 10.1039/d1dt03264j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although luminescent indium(III) based halide perovskites have been widely investigated, the study of emissive indium(III) halide hybrids is limited. Three indium(III) chloride hybrids based on a bpym ligand were synthesized, namely [EPy]2[InCl4(bpym)InCl4]·DMF (1), [EPy]2[InCl4(bpym)InCl4] (2), and [BPy]2[InCl4(bpym)InCl4] (3) (EPy = N-ethylpyridinium; BPy = N-butylpyridinium; bpym = 2,2'-bipyrimidine). They all exhibit a zero-dimensional structure, in which the ligand bpym interconnects two [InCl4]- to form a [InCl4(bpym)InCl4]2- anion that is further charge-compensated by the corresponding pyridinium cations. This is the first time using bpym to coordinate with an In atom. At 298 K, 1 exhibits a weak emission at 600 nm while 2 and 3 exhibit emissions peaking at 500 nm and 540 nm, respectively. Interestingly, the DMF solvent molecule in 1 can be removed by heating, thus resulting in the structural transformation of 1 into 2 together with a photoluminescence (PL) change. Density functional theory (DFT) calculations confirm that halogen-to-ligand charge-transfer (HLCT) occurs in the emission process. To the best of our knowledge, this is the first report on PL of ionic indium(III) halide hybrids incorporating organic ligands.
Collapse
Affiliation(s)
- Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Bing-Ye Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Jiang Jiang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Pan QY, Sun ME, Zhang C, Li LK, Liu HL, Li KJ, Li HY, Zang SQ. A multi-responsive indium-viologen hybrid with ultrafast-response photochromism and electrochromism. Chem Commun (Camb) 2021; 57:11394-11397. [PMID: 34648612 DOI: 10.1039/d1cc05070b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel 0D organic-inorganic metal halide hybrid (C13H16N2O2)2InCl6·Cl (1) has been obtained by integrating the mono-viologen derivative with InCl3. Compound 1 exhibits reversible and ultrafast UV/sunlight/X-ray induced photochromic properties, as well as excellent electrochromic performance, which is the first example of an indium-based organic-inorganic chromic hybrid.
Collapse
Affiliation(s)
- Qiu-Yue Pan
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Chong Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Hua-Li Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Kai-Jie Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou 450001, China.
| |
Collapse
|
35
|
Han D, Chen S, Du MH. Role of Polycyclic Aromatic Alkylammonium Cations in Tuning the Electronic Properties and Band Alignment of Two-Dimensional Hybrid Perovskite Semiconductors. J Phys Chem Lett 2021; 12:9754-9760. [PMID: 34592105 DOI: 10.1021/acs.jpclett.1c02603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional hybrid organic-inorganic perovskites (HOIPs) have recently drawn intense attention as potential photovoltaic materials. However, n = 1 two-dimensional (2D) HOIPs face the challenge of low conductivity between the inorganic layers, leading to unsatisfactory device performance. Interestingly, 2D HOIPs employing π-conjugated molecules as organic moieties show energy and charge transfers between organic and inorganic layers, indicating potentially efficient carrier transport for photovoltaic applications. Nevertheless, the development of 2D HOIP-based solar cells especially utilizing polycyclic aromatic alkylammonium as cations is in its infancy. Herein, we investigated the electronic structure and band alignment of a series of n = 1 2D Ruddlesden-Popper (RP) phase HOIPs containing different polycyclic aromatic groups and alkyl chains, based on density functional theory calculations. We find that the polycyclic aromatic group plays an important role in controlling the functionality of 2D HOIPs by directly modifying band-edge states, and the band alignment at the organic-inorganic interface can be designed to promote either exciton trapping or dissociation for light-emitting or photovoltaic applications, respectively.
Collapse
Affiliation(s)
- Dan Han
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Munich, Munich, D-81377, Germany
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Shiyou Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mao-Hua Du
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
36
|
Chaaban M, Ben-Akacha A, Worku M, Lee S, Neu J, Lin X, Vellore Winfred JSR, Delzer CJ, Hayward JP, Du MH, Siegrist T, Ma B. Metal Halide Scaffolded Assemblies of Organic Molecules with Enhanced Emission and Room Temperature Phosphorescence. J Phys Chem Lett 2021; 12:8229-8236. [PMID: 34423990 DOI: 10.1021/acs.jpclett.1c02354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ionically bonded organic metal halide hybrids have emerged as versatile multicomponent material systems exhibiting unique and useful properties. The unlimited combinations of organic cations and metal halides lead to the tremendous structural diversity of this class of materials, which could unlock many undiscovered properties of both organic cations and metal halides. Here we report the synthesis and characterization of a series benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb2X5 (X = Cl, Br), in which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides are found to exhibit enhanced photoluminescence and stability as compared to the pristine BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and theoretical calculations reveal that BZQ+ cations are responsible for the emissions in these hybrid materials. Changing the halide from Cl to Br introduces heavy atom effects, resulting in yellow room temperature phosphorescence (RTP) from BZQ+ cations.
Collapse
Affiliation(s)
- Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Michael Worku
- Materials Science and Engineering Program, Florida State University, Tallahassee, Florida 32306, United States
| | - Sujin Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jennifer Neu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - J S Raaj Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cordell J Delzer
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jason P Hayward
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mao-Hua Du
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Theo Siegrist
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Materials Science and Engineering Program, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
37
|
Zhang C, Feng X, Song Q, Zhou C, Peng L, Chen J, Liu X, Chen H, Lin J, Chen X. Blue-Violet Emission with Near-Unity Photoluminescence Quantum Yield from Cu(I)-Doped Rb 3InCl 6 Single Crystals. J Phys Chem Lett 2021; 12:7928-7934. [PMID: 34387495 DOI: 10.1021/acs.jpclett.1c01751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-dimensional metal halides have attracted considerable attention due to their unique optoelectronic properties. In this study, we report a solid-state synthesis of air-stable all-inorganic Pb-free zero-dimensional (0D) Rb3InCl6 single crystals (SCs). By a heterovalent doping of Cu+ ions, the Rb3InCl6:Cu+ SCs featured an efficient blue-violet emission with a greatly enhanced photoluminescence (PL) quantum yield (95%) and an ultralong PL lifetime (13.95 μs). Combined with temperature-dependent PL and density functional theory calculations, we conclude that the efficient electronic isolation, enhanced exciton-phonon coupling, and electronic structure modulation after doping lead to bright blue-violet emission. Furthermore, the SCs exhibited excellent stability, maintaining 90% of the initial PL intensity after being stored in ambient conditions for more than two months. The results provide a new strategy for improving the optoelectronic properties of 0D all-inorganic metal halides, which is promising for potential light-emitting applications.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuezhen Feng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qilin Song
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chaocheng Zhou
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Peng
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Chen
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaolin Liu
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia Lin
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|