1
|
Fragelli BDL, Assis M, Rodolpho JMA, Godoy KF, Líbero LO, Anibal FF, Longo E. Modulation of cell death mechanisms via α-Ag 2WO 4 morphology-dependent factors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112947. [PMID: 38851043 DOI: 10.1016/j.jphotobiol.2024.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The cytotoxic of α-Ag2WO4 synthesized in different morphologies (cuboidal (AW-C), hexagonal rod-like (AW-HRL) and nanometric rod-like (AW-NRL) was analyzed to understand the impact of morphological modulation on the toxicity of 3 T3 cell lines in the dark and when photoactivated by visible light. Pathways of toxicity were examined, such as parameters and electrostatic interaction, uptake, ion release and ROS production. Cytotoxicity was observed for all samples after reaching concentrations exceeding 7.8 μg/mL. Uptake tests demonstrated that the samples were not internalized by cells, likely due to their negative surface charge. AW-NRL exhibited autophagy in the absence of light and during photoactivation, primarily attributed to its ability to generate singlet oxygen. Analyzing intercellular ROS and RNS production, AW-HRL induced an increase in NO through exposure to photo-generated hydroxyl radicals, while AW-NRL showed increases only at non-photoactivated concentrations and AW-C did not exhibit increases. Interestingly, in the dark, these cells showed a low propensity for apoptosis, with late apoptosis and necrosis being more pronounced. When photoactivated, this behavior changed, revealing predominantly apoptotic and late apoptotic cell death. There is a need for an understanding of how morphology can alter the biological properties of α-Ag2WO4 to predict and optimize its effects on cellular responses.
Collapse
Affiliation(s)
- Bruna D L Fragelli
- Center for Development of Functional Materials, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil.
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), 12071 Castelló, Spain.
| | - Joice M A Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Krissia F Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Laura O Líbero
- Center for Development of Functional Materials, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Fernanda F Anibal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| | - Elson Longo
- Center for Development of Functional Materials, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
2
|
Lu P, Peng Y, Bai J. Polyimide/Ag 2WO 4 Z-Scheme Heterojunction for Efficient Photocatalytic Degradation of Tetracycline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12191-12199. [PMID: 38814134 DOI: 10.1021/acs.langmuir.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
It is of great significance to construct a Z-scheme heterojunction for improving solar light harvesting and achieving efficient separation of photogenerated carriers and then enhancement of the photocatalytic performance of semiconductor photocatalysts. Herein, the direct Z-scheme PI/Ag2WO4 heterojunction was designed and prepared according to the band edge potentials of the semiconductor. Due to the fact that the Z-scheme structure not only endowed the PI/Ag2WO4 composites with efficient separation of photogenerated electron-hole pairs but also reserved the redox ability of the valence band and conduction band of monophase catalysts, the 50% PI/Ag2WO4 heterojunction exhibited excellent photocatalytic activity, which were 2.9 and 1.5 times those of the PI and Ag2WO4 photocatalysts, respectively. The photocatalytic reaction mechanism of PI/Ag2WO4 composites was confirmed by the results of TEM, UV-vis, XPS, and EPR experiments. This work provides a feasible strategy to design high-performance photocatalysts in the field of practice purification of wastewater.
Collapse
Affiliation(s)
- Peng Lu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuqi Peng
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jinwu Bai
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
3
|
Chang YC, Bi JN, Pan KY, Chiao YC. Microwave-Assisted Synthesis of SnO 2@ZnIn 2S 4 Composites for Highly Efficient Photocatalytic Hydrogen Evolution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2367. [PMID: 38793432 PMCID: PMC11123309 DOI: 10.3390/ma17102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This research successfully synthesized SnO2@ZnIn2S4 composites for photocatalytic tap water splitting using a rapid two-step microwave-assisted synthesis method. This study investigated the impact of incorporating a fixed quantity of SnO2 nanoparticles and combining them with various materials to form composites, aiming to enhance photocatalytic hydrogen production. Additionally, different weights of SnO2 nanoparticles were added to the ZnIn2S4 reaction precursor to prepare SnO2@ZnIn2S4 composites for photocatalytic hydrogen production. Notably, the photocatalytic efficiency of SnO2@ZnIn2S4 composites is substantially higher than that of pure SnO2 nanoparticles and ZnIn2S4 nanosheets: 17.9-fold and 6.3-fold, respectively. The enhancement is credited to the successful use of visible light and the facilitation of electron transfer across the heterojunction, leading to the efficient dissociation of electron-hole pairs. Additionally, evaluations of recyclability demonstrated the remarkable longevity of SnO2@ZnIn2S4 composites, maintaining high levels of photocatalytic hydrogen production over eight cycles without significant efficiency loss, indicating their impressive durability. This investigation presents a promising strategy for crafting and producing environmentally sustainable SnO2@ZnIn2S4 composites with prospective implementations in photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
| | - Jia-Ning Bi
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
| | - Kuan-Yin Pan
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
| | - Yung-Chang Chiao
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; (J.-N.B.); (K.-Y.P.); (Y.-C.C.)
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
4
|
Kim V, Lee DW, Noh HR, Lee J, Kim TH, Park J, Kim JY, Lim SH. Copper-Based Two-Dimensional Metal-Organic Frameworks for Fenton-like Photocatalytic Degradation of Methylene Blue under UV and Sunlight Irradiation. Inorg Chem 2024; 63:8832-8845. [PMID: 38687621 DOI: 10.1021/acs.inorgchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
To efficiently degrade organic pollutants, photocatalysts must be effective under both ultraviolet (UV) radiation and sunlight. We synthesized a series of new metal-organic frameworks by using mild hydrothermal conditions. These frameworks incorporate three distinct bipyridyl ligands: pyrazine (pyr), 4,4'-bipyridine (bpy), and 1,2-bis(4-pyridyl)ethane (bpe). The resulting compounds are denoted as [Cu(pyz)(H2O)2MF6], [Cu(bpy)2(H2O)2]·MF6, and [Cu(bpe)2(H2O)2]·MF6·H2O [M = Zr (1, 3, and 5) and Hf (2, 4, and 6)]. All six compounds exhibited a two-dimensional crystal structure comprising infinitely nonintersecting linear chains. Compound 3 achieved 100% degradation of methylene blue (MB) after 8 min under UV irradiation and 100 min under natural sunlight in the presence of H2O2 as the electron acceptor. For compound 5, 100% MB degradation was achieved after 120 min under sunlight and 10 min under UV light. Moreover, reactive radical tests revealed that the dominant species involved in photocatalytic degradation are hydroxyl (•OH), superoxide radicals (•O2-), and photogenerated holes (h+). The photodegradation process followed pseudo-first-order kinetics, with photodegradation rate constants of 0.362 min-1 (0.039 min-1) for 3 and 0.316 min-1 (0.033 min-1) for 5 under UV (sunlight) irradiation. The developed photocatalysts with excellent activity and good recyclability are promising green catalysts for degrading organic pollutants during environmental decontamination.
Collapse
Affiliation(s)
- Viktoriya Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong Woo Lee
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Hye Ran Noh
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeongmook Lee
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tae-Hyeong Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Junghwan Park
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jong-Yun Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Ho Lim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Afsharpour M, Darvishi-Farash S. Novel synthesis of siligraphene/tungstates (g-SiC/AWO) with promoted transportation of photogenerated charge carriers via direct Z-scheme heterojunctions. Sci Rep 2023; 13:10022. [PMID: 37340156 DOI: 10.1038/s41598-023-37170-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
We developed here the efficient photocatalysts for the removal of high concentrations of tetracycline under visible light by immobilizing the AWO (A = Ag, Bi, Na) nanocrystals on the surface of siligraphene (g-SiC) nanosheets. The g-SiC/AWO composites was synthesized by magnesiothermic synthesis of g-SiC and sonochemical immobilization of tungstates. These new heterojunctions of g-SiC/tungstates show superior photocatalytic activities in the degradation of high concentrations of tetracycline and 97, 98, and 94% of tetracycline were removed by using low amounts of g-SiC/Ag2WO4, g-SiC/Bi2WO6, and g-SiC/Na2WO4 catalysts, respectively. Based on band structures, the band gaps reduce and the photocatalytic activities were extremely enhanced due to the shortening of electron transfer distance through the Z-scheme mechanism. Also, the graphenic structure of g-SiC is another parameter that was effective in improving photocatalytic performance by increasing the electron transfer and decreasing the rate of electron-hole recombination. Furthermore, the π back-bonding of g-SiC with metal atoms increases the electron-hole separation to enhance the photocatalytic activity. Interestingly, g-SiC composites (g-SiC/AWO) showed much higher photocatalytic properties compared to graphene composites (gr/AWO) and can remove the tetracycline even at dark by producing the oxygenated radicals via adsorption of oxygen on the positive charge of Si atoms in siligraphene structure.
Collapse
Affiliation(s)
- Maryam Afsharpour
- Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, 14335-186, Iran.
| | - Somayeh Darvishi-Farash
- Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, 14335-186, Iran
| |
Collapse
|
6
|
Salesi S, Nezamzadeh-Ejhieh A. Boosted photocatalytic effect of binary AgI/Ag 2WO 4 nanocatalyst: characterization and kinetics study towards ceftriaxone photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90191-90206. [PMID: 35864406 DOI: 10.1007/s11356-022-22100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In modern chemistry, great interest has been paid to introducing outstanding photocatalysts for degrading organic pollutants. Herein, a highly efficient binary AgI/Ag2WO4 photocatalyst was prepared from AgI and Ag2WO4 nanoparticles (NPs) and characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), and Fourier transform infrared (FT-IR) techniques. In the Scherrer model, the average crystallite sizes of 34.9, 42.0, and 24.1 nm were estimated for the AgI, Ag2WO4, and the binary catalyst, while the values were 91, 13, and 85 nm by the Williamson-Hall model. FTIR confirmed the presence of W-O-W, O-W-O, Ag-I, and O-Ag-O bonds in the coupled material. DRS results showed absorption edge wavelengths of 451, 462, and 495 nm (corresponding to the band gap values of 2.75, 2.68, and 2.51 eV) for Ag2WO4, AgI, and AgI/Ag2WO4 catalyst, respectively. Synergistic photocatalytic activity of the coupled system was achieved towards ceftriaxone (CTX) in an aqueous solution (about 33% 10 ppm CTX solution was degraded without any optimization in the initial conditions of catal dose 0.3 g/L (Ag2WO4:AgI with mole ratio 1:2 and 30 min abrasion time), and irrad. time 45 min, CCTX). This boosted effect depended on the AgI:Ag2WO4 mole ratio and grinding time for the mechanical preparation of the binary catalyst (optimums: mole ratio of 4:1 and time 30 min). The photodegradation kinetics obeyed the Hinshelwood model with the apparent first-order rate constant (k) of 0.013 min-1 (t1/2 = 53.30 min). Performing the COD on the photodegraded CTX solutions got a Hinshelwood plot with a slope of 0.019 min-1 (t1/2 = 36.5 min).
Collapse
Affiliation(s)
- Sabereh Salesi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
7
|
Huangfu Z, Wang Z, Liang Y, Zhu X, Yuan C, Zhang H, Yang K, Cheng X. Comparative analysis of the emission of Eu3+ doped in α- and β-Ag2WO4. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ribeiro LK, Gouveia AF, Silva FDCM, Noleto LFG, Assis M, Batista AM, Cavalcante LS, Guillamón E, Rosa ILV, Longo E, Andrés J, Luz Júnior GE. Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag 2WO 4. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193316. [PMID: 36234445 PMCID: PMC9565223 DOI: 10.3390/nano12193316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 05/17/2023]
Abstract
Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. The presence of carboxylic acids affects the kinetics of the nucleation process, alters the growth rate, and governs the size and morphology. Samples synthesized with citric acid revealed excellent photocatalytic activity for the degradation process of Rhodamine B, and recyclability experiments demonstrate that it retains 91% of its photocatalytic activity after four recycles. Scavenger experiments indicate that both the hydroxyl radical and the hole are key species for the success of the transformation. A reaction pathway is proposed that involves a series of dissolution-hydration-dehydration and precipitation processes, mediated by the complexation of Ag+. We believe these studies contribute to a fundamental understanding of the crystallization process and provide guidance as to how carboxylic acids can influence the synthesis of materials with controlled size and morphology, which is promising for multiple other scientific fields, such as sensor and catalysis fields.
Collapse
Affiliation(s)
- Lara Kelly Ribeiro
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Piaui, 64049-550, Brazil
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | - Amanda Fernandes Gouveia
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | | | - Luís F. G. Noleto
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Piaui, 64049-550, Brazil
| | - Marcelo Assis
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | - André M. Batista
- Postgraduate Program in Nanoscience in Advanced Materials, Department of Chemistry, Federal University of ABC, 09210-580, Brazil
| | - Laécio S. Cavalcante
- Postgraduate Program in Chemistry, Department of Chemistry, State University of Piaui, P.O. Box 381, 64002-150, Brazil
| | - Eva Guillamón
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | - Ieda L. V. Rosa
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
| | - Elson Longo
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
- Correspondence: ; Tel.: +34-669-36-94-11
| | - Geraldo E. Luz Júnior
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Piaui, 64049-550, Brazil
- Postgraduate Program in Nanoscience in Advanced Materials, Department of Chemistry, Federal University of ABC, 09210-580, Brazil
| |
Collapse
|
9
|
Pereira PFS, de Paula E Silva ACA, da Silva Pimentel BNA, Pinatti IM, Simões AZ, Vergani CE, Barreto-Vieira DF, da Silva MAN, Miranda MD, Monteiro MES, Tucci A, Doñate-Buendía C, Mínguez-Vega G, Andrés J, Longo E. Inactivation of SARS-CoV-2 by a chitosan/α-Ag 2WO 4 composite generated by femtosecond laser irradiation. Sci Rep 2022; 12:8118. [PMID: 35581241 PMCID: PMC9114143 DOI: 10.1038/s41598-022-11902-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.
Collapse
Affiliation(s)
- Paula Fabiana Santos Pereira
- CDMF, LIEC, Department of Chemistry, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, SP, 13565-905, Brazil.,Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castelló, Spain
| | - Ana Carolina Alves de Paula E Silva
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Bruna Natália Alves da Silva Pimentel
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Ivo Mateus Pinatti
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castelló, Spain.,Faculty of Engineering of Guaratinguetá, São Paulo State University (UNESP), Guaratinguetá, SP, 12516-410, Brazil
| | - Alexandre Zirpoli Simões
- Faculty of Engineering of Guaratinguetá, São Paulo State University (UNESP), Guaratinguetá, SP, 12516-410, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), 1680 Humaitá Street, Araraquara, SP, 14801-903, Brazil
| | - Débora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | | | - Milene Dias Miranda
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | - Maria Eduarda Santos Monteiro
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | - Amanda Tucci
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, Rio de Janeiro, Brazil
| | - Carlos Doñate-Buendía
- GROC UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat sn, 12071, Castellón de la Plana, Spain.,Materials Science and Additive Manufacturing, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Gladys Mínguez-Vega
- GROC UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071, Castelló, Spain
| | - Elson Longo
- CDMF, LIEC, Department of Chemistry, Federal University of São Carlos (UFSCar), P.O. Box 676, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
10
|
Monoclinic- vs. triclinic-(NH4)2[Mg(H2O)6]2V10O28∙4H2O: Structural studies and variation in antibacterial activities with the polymorph type. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Abreu CBD, Gebara RC, Reis LLD, Rocha GS, Alho LDOG, Alvarenga LM, Virtuoso LS, Assis M, Mansano ADS, Longo E, Melão MDGG. Toxicity of α-Ag 2WO 4 microcrystals to freshwater microalga Raphidocelis subcapitata at cellular and population levels. CHEMOSPHERE 2022; 288:132536. [PMID: 34637867 DOI: 10.1016/j.chemosphere.2021.132536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 05/29/2023]
Abstract
Silver-based materials have microbicidal action, photocatalytic activity and electronic properties. The increase in manufacturing and consumption of these compounds, given their wide functionality and application, is a source of contamination to freshwater ecosystems and causes toxicity to aquatic biota. Therefore, for the first time, we evaluated the toxicity of the silver tungstate (α-Ag2WO4), in different morphologies (cube and rod), for the microalga Raphidocelis subcapitata. To investigate the toxicity, we evaluated the growth rate, cell complexity and size, reactive oxygen species (ROS) production and chlorophyll a (Chl a) fluorescence. The α-Ag2WO4 - R (rod) was 1.7 times more toxic than α-Ag2WO4-C (cube), with IC10 and IC50 values of, respectively, 8.68 ± 0.91 μg L-1 and 13.72 ± 1.48 μg L-1 for α-Ag2WO4 - R and 18.60 ± 1.61 μg L-1 and 23.47 ± 1.16 μg L-1 for α-Ag2WO4-C. The release of silver ions was quantified and indicated that the silver ions dissolution from the α-Ag2WO4 - R ranged from 34 to 71%, while the Ag ions from the α-Ag2WO4-C varied from 35 to 97%. The α-Ag2WO4-C induced, after 24 h exposure, the increase of ROS at the lowest concentrations (8.81 and 19.32 μg L-1), whereas the α-Ag2WO4 - R significantly induced ROS production at 96 h at the highest concentration (31.76 μg L-1). Both microcrystal shapes significantly altered the cellular complexity and decreased the Chl a fluorescence at all tested concentrations. We conclude that the different morphologies of α-Ag2WO4 negatively affect the microalga and are important sources of silver ions leading to harmful consequences to the aquatic ecosystem.
Collapse
Affiliation(s)
- Cínthia Bruno de Abreu
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Renan Castelhano Gebara
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Larissa Luiza Dos Reis
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Department of Hydraulic and Sanitation (NEEA/CRHEA/SHS), São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil
| | - Lays de Oliveira Gonçalves Alho
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Laís Mendes Alvarenga
- Chemistry Institute - Federal University of Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Luciano Sindra Virtuoso
- Chemistry Institute - Federal University of Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Marcelo Assis
- Center for Development of Functional Materials (CDMF), Federal University of São Carlos - (UFSCar), P.O, Box 676, 13565-905, São Carlos, SP, Brazil
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Elson Longo
- Center for Development of Functional Materials (CDMF), Federal University of São Carlos - (UFSCar), P.O, Box 676, 13565-905, São Carlos, SP, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
12
|
A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Ribeiro LK, Assis M, Lima LR, Coelho D, Gonçalves MO, Paiva RS, Moraes LN, Almeida LF, Lipsky F, San-Miguel MA, Mascaro LH, Grotto RMT, Sousa CP, Rosa ILV, Cruz SA, Andrés J, Longo E. Bioactive Ag 3PO 4/Polypropylene Composites for Inactivation of SARS-CoV-2 and Other Important Public Health Pathogens. J Phys Chem B 2021; 125:10866-10875. [PMID: 34546760 PMCID: PMC8482321 DOI: 10.1021/acs.jpcb.1c05225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/08/2021] [Indexed: 01/08/2023]
Abstract
The current unprecedented coronavirus pandemic (COVID-19) is increasingly demanding advanced materials and new technologies to protect us and inactivate SARS-CoV-2. In this research work, we report the manufacture of Ag3PO4 (AP)/polypropylene (PP) composites using a simple method and also reveal their long-term anti-SARS-CoV-2 activity. This composite shows superior antibacterial (against Staphylococcus aureus and Escherichia coli) and antifungal activity (against Candida albicans), thus having potential for a variety of technological applications. The as-manufactured materials were characterized by XRD, Raman spectroscopy, FTIR spectroscopy, AFM, UV-vis spectroscopy, rheology, SEM, and contact angle to confirm their structural integrity. Based on the results of first-principles calculations at the density functional level, a plausible reaction mechanism for the initial events associated with the generation of both hydroxyl radical •OH and superoxide radical anion •O2- in the most reactive (110) surface of AP was proposed. AP/PP composites proved to be an attractive avenue to provide human beings with a broad spectrum of biocide activity.
Collapse
Affiliation(s)
- Lara K. Ribeiro
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Marcelo Assis
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Lais R. Lima
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Dyovani Coelho
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Mariana O. Gonçalves
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program, Federal University of São Carlos (UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Robert S. Paiva
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Leonardo N. Moraes
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Lauana F. Almeida
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Felipe Lipsky
- Institute
of Chemistry, State University of Campinas
(Unicamp), Campinas, São Paulo 13083-970, Brazil
| | - Miguel A. San-Miguel
- Institute
of Chemistry, State University of Campinas
(Unicamp), Campinas, São Paulo 13083-970, Brazil
| | - Lúcia H. Mascaro
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Rejane M. T. Grotto
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Cristina P. Sousa
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program, Federal University of São Carlos (UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Ieda L. V. Rosa
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Sandra A. Cruz
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Juan Andrés
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Elson Longo
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| |
Collapse
|