1
|
Humayun A, Manivelan N, Prabakar K. Charge Transfer in n-FeO and p-α-Fe 2O 3 Nanoparticles for Efficient Hydrogen and Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1515. [PMID: 39330671 PMCID: PMC11434590 DOI: 10.3390/nano14181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
This study aims to explore the n-FeO and p-α-Fe2O3 semiconductor nanoparticles in hydrogen (HER) and oxygen (OER) evolution reactions and a combined full cell electrocatalyst system to electrolyze the water. We have observed a distinct electrocatalytic performance for both HER and OER by tuning the interplay between iron oxidation states Fe2+ and Fe3+ and utilizing phase-transformed iron oxide nanoparticles (NPs). The Fe2+ rich n-FeO NPs exhibited superior HER performance compared to p-α-Fe2O3 and Fe(OH)x NPs, which is attributed to the enhancement in n-type semiconducting nature under HER potential, facilitating the electron transfer for the reduction in H+ ions. In contrast, p-α-Fe2O3 NPs demonstrated excellent OER activity. An H-cell constructed using n-FeO||p-α-Fe2O3 NPs as cathode and anode achieved a cell voltage of 1.87 V at a current density of 50 mA/cm2. The cell exhibited remarkable stability after 30 h of activation and maintained the high current density of 100 mA/cm2 for 80 h with a negligible increase in cell voltage. This work highlights the semiconducting properties of n-FeO and p-α-Fe2O3 for the electrochemical water splitting system using the band bending phenomenon under the applied potential.
Collapse
Affiliation(s)
| | | | - Kandasamy Prabakar
- Advanced Sustainable Energy Laboratory, Department of Electrical and Electronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Sun A, Qiu Y, Chen K, Xu H, Liu J. Constructing built-in electric field in oxygen vacancies-enriched Fe 3O 4-FeSe 2 heterojunctions supported on reduced graphene oxide for efficient overall water splitting. J Colloid Interface Sci 2024; 674:1083-1091. [PMID: 39018937 DOI: 10.1016/j.jcis.2024.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Combining interfacial oxygen vacancy engineering with a built-in electric field (BEF) technique is an efficient way to build efficient and practical electrocatalytic water-splitting catalysts. In this study, a Fe3O4-FeSe2 heterojunction catalyst with oxygen vacancies supported on reduced graphene oxide (rGO) was designed and successfully fabricated using a simple two-step hydrothermal method. Owing to the different Fermi levels of Fe3O4 and FeSe2, a BEF was generated at the interface, which enhanced the separation of negative and positive charges, thus optimizing the adsorption of hydrogen/oxygen intermediates on the heterostructures and improving the activity of the catalyst. Experimental results show that Fe3O4-FeSe2/rGO/NF exhibits excellent hydrogen and oxygen evolution performances, with low overpotentials of 234/300 mV at 100 mA⋅cm-2. A water electrolyzer assembled with Fe3O4-FeSe2/rGO/NF as both the anode and cathode requires only a small potential of 1.78 V to reach a current density of 100 mA⋅cm-1. This study provides an innovative approach for constructing a catalyst with excellent electrocatalytic performance for overall water splitting.
Collapse
Affiliation(s)
- Aowei Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Kuiyong Chen
- College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| | - Hezeng Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China; College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| |
Collapse
|
3
|
Li H, Wang J, Tjardts T, Barg I, Qiu H, Müller M, Krahmer J, Askari S, Veziroglu S, Aktas C, Kienle L, Benedikt J. Plasma-Engineering of Oxygen Vacancies on NiCo 2O 4 Nanowires with Enhanced Bifunctional Electrocatalytic Performance for Rechargeable Zinc-air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310660. [PMID: 38164883 DOI: 10.1002/smll.202310660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Designing an efficient, durable, and inexpensive bifunctional electrocatalyst toward oxygen evolution reactions (OER) and oxygen reduction reactions (ORR) remains a significant challenge for the development of rechargeable zinc-air batteries (ZABs). The generation of oxygen vacancies plays a vital role in modifying the surface properties of transition-metal-oxides (TMOs) and thus optimizing their electrocatalytic performances. Herein, a H2/Ar plasma is employed to generate abundant oxygen vacancies at the surfaces of NiCo2O4 nanowires. Compared with the Ar plasma, the H2/Ar plasma generated more oxygen vacancies at the catalyst surface owing to the synergic effect of the Ar-related ions and H-radicals in the plasma. As a result, the NiCo2O4 catalyst treated for 7.5 min in H2/Ar plasma exhibited the best bifunctional electrocatalytic activities and its gap potential between Ej = 10 for OER and E1/2 for ORR is even smaller than that of the noble-metal-based catalyst. In situ electrochemical experiments are also conducted to reveal the proposed mechanisms for the enhanced electrocatalytic performance. The rechargeable ZABs, when equipped with cathodes utilizing the aforementioned catalyst, achieved an outstanding charge-discharge gap, as well as superior cycling stability, outperforming batteries employing noble-metal catalyst counterparts.
Collapse
Affiliation(s)
- He Li
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, D-24098, Kiel, Germany
| | - Jihao Wang
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2/Otto-Hahn-Platz 6, D-24118., Kiel, Germany
| | - Tim Tjardts
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Igor Barg
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Haoyi Qiu
- Chair for Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Martin Müller
- Chair for Synthesis and Real Structure, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Jan Krahmer
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2/Otto-Hahn-Platz 6, D-24118., Kiel, Germany
| | - Sadegh Askari
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Salih Veziroglu
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface, and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Cenk Aktas
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Lorenz Kienle
- Chair for Synthesis and Real Structure, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface, and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Jan Benedikt
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, D-24098, Kiel, Germany
- Kiel Nano, Surface, and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| |
Collapse
|
4
|
Yang L, Wang M, Shan H, Ma Y, Peng Y, Hu K, Deng C, Yu H, Lv J. Generic heterostructure interfaces bound to Co 9S 8 for efficient overall water splitting supported by photothermal. J Colloid Interface Sci 2024; 662:748-759. [PMID: 38377694 DOI: 10.1016/j.jcis.2024.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
The increase of reaction temperature of electrocatalysts and the construction of heterogeneous structures is regarded as an efficient method to improve the electrocatalytic water splitting activity. Here, we report an approach to enhance the local heat and active sites of the catalyst by building a heterostructure with Co9S8 to significantly improve its electrocatalytic performance. The as-fabricated Co9S8@Ce-NiCo LDH/NF electrode possesses a notable photothermal ability, as it effectively converts near-infrared (NIR) light into the local heat, owing to its significant optical absorption. Leveraging these favorable qualities, the prepared Co9S8@Ce-NiCo LDH/NF electrode showed impressive performance in both hydrogen evolution reaction (HER) (η100 = 144 mV) and oxygen evolution reaction (OER) (η100 = 229 mV) under NIR light. Compared to the absence of the NIR light, the presence of NIR irradiation leads to a 24.6 % increase in catalytic efficiency for HER and a 15.8 % increase for OER. Additionally, other dual-functional electrocatalysts like NiCo-P, NiFeMo, and NiFe(OH)x also demonstrated significantly enhanced photothermal effects and improved catalytic performance owing to the augmented photothermal conversion when combined with Co9S8. This work offers novel pathways for the development of photothermal-electrocatalytic systems that facilitate economically efficient and energy-conserving overall water splitting processes.
Collapse
Affiliation(s)
- Lei Yang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China.
| | - Mengxiang Wang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Hai Shan
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Yiming Ma
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yujie Peng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Chonghai Deng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Hai Yu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Jianguo Lv
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
5
|
Chandrasekar S, A N, Thiruppathi G, Sundararaj P, C S, J H, I P. Multiprocessing Substrates Enhanced Ta 2O 5/NiCo 2O 4 Spinel Nanocomposites for Effective Electro-/Photocatalytic and Toxicological Effects via the Caenorhabditis elegans Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6077-6093. [PMID: 38466375 DOI: 10.1021/acs.langmuir.3c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
NiCo2O4 spinel composites decorated with metal oxides (Ta2O5), reduced graphene oxide (rGO), polyaminoanthraquinone (PAAQ), and layered double hydroxide hydrotalcite (HTs) were synthesized by the hydrothermal route. The synthesized composites were characterized using X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS) analyses for structural parameters such as surface area, morphology, chemical composition, etc. The production of oxygen by the water oxidation technique is the most suitable eco-friendly method, where rGO@Ta2O5/NiCo2O4 (RTNCO) showed an efficient oxygen evolution reaction (OER) performance under 1 M KOH electrolyte. Lower Tafel slope and overpotential values of 76 mV dec-1 and 315 mV, respectively, were calculated for RTNCO. The photocatalytic degradation efficiencies calculated were MB = 97.86%, RhB = 94.75%, and AP = 96% under UV light illumination within 120 min. The degraded dye solution was tested on mung bean (Vigna radiata) plants to determine the toxicity of the dye solution after 15 days, and the results showed good seed germination similar to that in water as the control. The synthesized materials exhibited better antibacterial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Interestingly, the toxicological effects of the degraded dyes and drug solutions were effectively studied in the Caenorhabditis elegans model. The overall results revealed that the synthesized composites are promising for electro-/photocatalytic and biological applications.
Collapse
Affiliation(s)
| | - Nivetha A
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | | | | - Senthamil C
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Hemalatha J
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Prabha I
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
6
|
Zhang J, Zhang S, Zhang X, Ma Z, Wang Z, Zhao B. Construction of Ni 4Mo/MoO 2 heterostructure on oxygen vacancy enriched NiMoO 4 nanorods as an efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2023; 650:1490-1499. [PMID: 37481786 DOI: 10.1016/j.jcis.2023.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Despite great efforts over the past decade, rational design of bifunctional electrocatalysts with low cost and high efficiency still remains a challenge to achieve industrial water splitting. Herein, we synthesized the nickel-molybdenum nanorod array catalyst supported on NF (NMO@NM/MO) by a two-step process of hydrothermal and reductive annealing. Partial reduction of the NiMoO4 induces the structural reconstruction and formation of the Ni4Mo/MoO2 heterostructure on oxygen vacancy enriched nanorod, which bring out sufficient active sites, large specific surface area and favorable interfacial charge transfer. Thanks to the unique core-shell structure with the heterostructured Ni4Mo/MoO2 surface and defect-rich NiMoO4 core, the obtained electrocatalyst shows greatly improved hydrogen evolution reaction (HER) activity with an ultralow overpotential of 63 mV at 100 mA cm-2 (vs. 314 mV for the NiMoO4). Density function theory calculations reveal that the construction of the Ni4Mo/MoO2 heterostructure effectively accelerates H2O dissociation kinetics, while the defective NiMoO4 facilitates H* adsorption/desorption. Moreover, the heterostructure catalyst also displays excellent oxygen evolution reaction (OER) performance with the low overpotential of 274 mV at 100 mA cm-2. When coupling HER and OER by using NMO@NM/MO as both the cathode and anode, the alkaline electrolyzer delivers a current density of 10 mA cm-2 at only 1.50 V as well as good robustness. The synergistic effect of the hetero-interface and the defect engineering endows the electrocatalyst with excellent bifunctional catalytic activity for HER and OER. This work may provide a route for rational design of heterostructure electrocatalysts with multiple active components.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shasha Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaofeng Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhen Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuo Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Chen Z, Qu Q, Li X, Srinivas K, Chen Y, Zhu M. Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction. Molecules 2023; 28:7289. [PMID: 37959709 PMCID: PMC10648594 DOI: 10.3390/molecules28217289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The oxygen evolution reaction (OER) is a key half-reaction in electrocatalytic water splitting. Large-scale water electrolysis is hampered by commercial noble-metal-based OER electrocatalysts owing to their high cost. To address these issues, we present a facile, one-pot, room-temperature co-precipitation approach to quickly synthesize carbon-nanotube-interconnected amorphous NiFe-layered double hydroxides (NiFe-LDH@CNT) as cost-effective, efficient, and stable OER electrocatalysts. The hybrid catalyst NiFe-LDH@CNT delivered outstanding OER activity with a low onset overpotential of 255 mV and a small Tafel slope of 51.36 mV dec-1, as well as outstanding long-term stability. The high catalytic capability of NiFe-LDH@CNT is associated with the synergistic effects of its room-temperature synthesized amorphous structure, bi-metallic modulation, and conductive CNT skeleton. The room-temperature synthesis can not only offer economic feasibility, but can also allow amorphous NiFe-LDH to be obtained without crystalline boundaries, facilitating long-term stability during the OER process. The bi-metallic nature of NiFe-LDH guarantees a modified electronic structure, providing additional catalytic sites. Simultaneously, the highly conductive CNT network fosters a nanoporous structure, facilitating electron transfer and O2 release and enriching catalytic sites. This study introduces an innovative approach to purposefully design nanoarchitecture and easily synthesize amorphous transition-metal-based OER catalysts, ensuring their cost effectiveness, production efficiency, and long-term stability.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiang Qu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinsheng Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Katam Srinivas
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanfu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Dong X, Peng C, Zhao X, Zhang T, Liu Y, Xu G, Zhou J, Guo F, Yu Z, Jia X. Self-assembled c-oriented Ni(OH) 2 films for enhanced electrocatalytic activity towards the urea oxidation reaction. RSC Adv 2023; 13:29625-29631. [PMID: 37822661 PMCID: PMC10562896 DOI: 10.1039/d3ra05538h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
This study investigates the electrocatalytic properties of the transparent c-oriented Ni(OH)2 films self-assembled from colloidal 2D Ni(OH)2 nanosheets for urea oxidation. The synthesis process yields highly uniform close-packed superlattices with a dominant c-axis orientation. The self-assembled c-oriented Ni(OH)2 films exhibit advantageous electrocatalytic performance in urea oxidation, presenting significantly lower overpotentials and higher current densities compared to randomly distributed Ni(OH)2 particles. In-depth in situ impedance analysis and Raman spectroscopy demonstrate that the c-oriented Ni(OH)2 films possess a higher propensity for a Ni valence transition from +2 to +3 during the urea oxidation process. This finding provides crucial insights into the catalytic behavior and electronic transformations of c-oriented Ni(OH)2 films, shedding light on their superior electrocatalytic activity for urea oxidation. Overall, this study advances our understanding of urea electrooxidation mechanisms and contributes to the design of efficient urea electrocatalysts.
Collapse
Affiliation(s)
- Xinwei Dong
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Chen Peng
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Xu Zhao
- School of Computer Science and Technology, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Tao Zhang
- School of Computer Science and Technology, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Yansheng Liu
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Guoxiao Xu
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Fei Guo
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Zhiqiang Yu
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi University of Science and Technology Liuzhou 545006 Guangxi China
| |
Collapse
|
9
|
Mohamed MS, Gondal MA, Hassan M, Almessiere MA, Tahir AA, Roy A. Effective Hydrogen Production from Alkaline and Natural Seawater using WO 3-x@CdS 1-x Nanocomposite-Based Electrocatalysts. ACS OMEGA 2023; 8:33332-33341. [PMID: 37744852 PMCID: PMC10515405 DOI: 10.1021/acsomega.3c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Offshore hydrogen production through water electrolysis presents significant technical and economic challenges. Achieving an efficient hydrogen evolution reaction (HER) in alkaline and natural seawater environments remains daunting due to the sluggish kinetics of water dissociation. To address this issue, we synthesized electrocatalytic WO3-x@CdS1-x nanocomposites (WCSNCs) using ultrasonic-assisted laser irradiation. The synthesized WCSNCs with varying CdS contents were thoroughly characterized to investigate their structural, morphological, and electrochemical properties. Among the samples tested, the WCSNCs with 20 wt % CdS1-x in WO3-x (Wx@Sx-20%) exhibited superior electrocatalytic performance for hydrogen evolution in a 1 M KOH solution. Specifically, the Wx@Sx-20% catalyst demonstrated an overpotential of 0.191 V at a current density of -10 mA/cm2 and a Tafel slope of 61.9 mV/dec. The Wx@Sx-20% catalysts demonstrated outstanding stability and durability, maintaining their performance after 24 h and up to 1000 CV cycles. Notably, when subjected to natural seawater electrolysis, the Wx@Sx-20% catalysts outperformed in terms of electrocatalytic HER activity and stability. The remarkable performance enhancement of the prepared electrocatalyst can be attributed to the combined effect of sulfur vacancies in CdS1-x and oxygen vacancies in WO3-x. These vacancies promote the electrochemically active surface area, enhance the rate of charge separation and transfer, increase the number of electrocatalytic active sites, and accelerate the HER process in alkaline and natural seawater environments.
Collapse
Affiliation(s)
- Mohamed
Jaffer Sadiq Mohamed
- Laser
Research Group, Department of Physics & Interdisciplinary Research
Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Mohammed Ashraf Gondal
- Laser
Research Group, Department of Physics & Interdisciplinary Research
Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- K.
A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Hassan
- Laser
Research Group, Department of Physics & Interdisciplinary Research
Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Munirah Abdullah Almessiere
- Department
of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department
of Physics, College of Science, Imam Abdulrahman
Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Asif Ali Tahir
- Solar
Energy Research Group, Environment and Sustainability Institute, Faculty
of Environment, Science and Economy, University
of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K.
| | - Anurag Roy
- Solar
Energy Research Group, Environment and Sustainability Institute, Faculty
of Environment, Science and Economy, University
of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K.
| |
Collapse
|
10
|
Magotra VK, Magotra A, Mali SS, Jeon HC, Kang TW, Salunke AS, Hong CK, Shrestha NK, Im H, Inamdar AI. Nanoflake NiMn Layered Double Hydroxide Coated on Porous Membrane-like Ni-Foam for Sustainable and Efficient Electrocatalytic Oxygen Evolution. MEMBRANES 2023; 13:748. [PMID: 37755170 PMCID: PMC10535034 DOI: 10.3390/membranes13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Layered double hydroxides (LDHs) have gained vast importance as an electrocatalyst for water electrolysis to produce carbon-neutral and clean hydrogen energy. In this work, we demonstrated the fabrication of nano-flake-like NiMn LDH thin film electrodes onto porous membrane-like Ni-foam by using a simple and cost-effective electrodeposition method for oxygen evolution reaction (OER). Various Ni1-xMnx LDH (where x = 0.15, 0.25, 0.35, 0.50 and 0.75) thin film electrodes are utilized to achieve the optimal catalyst for an efficient and sustainable OER process. The various composition-dependent surface morphologies and porous-membrane-like structure provided the high electrochemical surface area along with abundant active sites facilitating the OER. The optimized catalyst referred to as Ni0.65Mn0.35 showed excellent OER properties with an ultralow overpotential of 253 mV at a current density of 50 mAcm-2, which outperforms other state-of-the art catalysts reported in the literature. The relatively low Tafel slope of 130 mV dec-1 indicates faster and more favorable reaction kinetics for OER. Moreover, Ni0.65Mn0.35 exhibits excellent durability over continuous operation of 20 h, indicating the great sustainability of the catalyst in an alkaline medium. This study provides knowledge for the fabrication and optimization of the OER catalyst electrode for water electrolysis.
Collapse
Affiliation(s)
- Verjesh Kumar Magotra
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 13557, Republic of Korea
| | - Arjun Magotra
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Jain (Deemed-to-be University), Bengaluru 562112, India
| | - Sawanta S. Mali
- Polymer Energy Materials Laboratory, School of Applied Chemical Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Hee C. Jeon
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 13557, Republic of Korea
| | - Tae W. Kang
- Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 13557, Republic of Korea
| | - Amol S. Salunke
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Kook Hong
- Polymer Energy Materials Laboratory, School of Applied Chemical Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Nabeen K. Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Akbar I. Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
11
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
12
|
Singh M, Karmakar A, Seal N, Mondal PP, Kundu S, Neogi S. Redox-Active and Urea-Engineered-Entangled MOFs for High-Efficiency Water Oxidation and Elevated Temperature Advanced CO 2 Separation Cum Organic-Site-Driven Mild-Condition Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24504-24516. [PMID: 37162125 DOI: 10.1021/acsami.3c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Development of the multifaceted metal-organic framework (MOF) with in situ engineered task-specific sites can promise proficient oxygen evolution reaction (OER) and high-temperature adsorption cum mild-condition fixation of CO2. In fact, effective assimilation of these attributes onto a single material with advance performance characteristics is practically imperative in view of renewable energy application and carbon-footprint reduction. Herein, we developed a three-fold interpenetrated robust Co(II) framework that embraces both redox-active and hydrogen-bond donor moieties inside the microporous channel. The activated MOF demonstrates notable OER catalysis in alkaline medium via quasi-reversible Co2+/Co3+ couple and unveils low overpotential with impressive 53.5 mV/dec Tafel slope that overpowers some benchmark, commercial, as well as contemporary materials. In particular, significantly increased turnover frequency (3.313 s-1 at 400 mV) and fairly low charge-transfer resistance (3.02 Ω) compared to Co3O4, NiO, and majority of redox-active MOFs together with 91% Faradaic efficiency and notable framework durability after multiple OER cycles endorse high-performance water oxidation. Pore-wall decked urea groups benefit appreciable CO2 adsorption even at elevated temperatures with considerable MOF-CO2 interactions and exhibit recurrent capture-release cycles at diverse temperatures. Interestingly, CO2 selectivity displays radical upsurge with temperature rise, affording 40% improved CO2/N2 value of 200 at 313 K, which outperforms many porous adsorbents and delineates real-time CO2 scavenging potential. The guest-free MOF effectively catalyzes solvent-free CO2 cycloaddition with broad substrate tolerance and satisfactory reusability under relatively mild condition. Opposed to the common Lewis acid-mediated reaction, two-point hydrogen-bonding activates the substrate, as supported from controlled experiments, juxtaposing the performance of an un-functionalized MOF and fluorescence modification-derived framework-epoxide interaction, providing valuable insights on unconventional cycloaddition route in the MOF.
Collapse
Affiliation(s)
- Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Partha Pratim Mondal
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| |
Collapse
|
13
|
Roy Chowdhury P, Medhi H, Bhattacharyya KG, Mustansar Hussain C. Recent progress in the design and functionalization strategies of transition metal-based layered double hydroxides for enhanced oxygen evolution reaction: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
14
|
Baby JN, Stanley MM, V AS, George M. Eutectic solvent mediated synthesis of carbonated CoFe-LDH nanorods: The effect of interlayer anion (Cl -, SO 42-, CO 32-) variants for comparing the bifunctional electrochemical sensing application. CHEMOSPHERE 2023; 315:137716. [PMID: 36592839 DOI: 10.1016/j.chemosphere.2022.137716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The unabated usage of priority anthropogenic stressors is a serious concern in the global environmental context. Pharmaceutical drugs such as furazolidone (FL) and nilutamide (NL) have far-reaching repercussions due to the presence of the reactive nitroaromatic moiety. Despite the widespread awareness regarding the dangers posed by nitroaromatic drugs, the promises to alleviate the environmental consequences of drug pollution are often unmet. Accordingly, implementing practices to monitor their presence in various media is a highly desirable, but challenging undertaking. With the advent of deep eutectic solvent-assisted synthesis, it has become possible to fabricate LDH-based sensor materials with minimal energy inputs in a sustainable and scalable manner. In this work, we have framed a series of CoFe-LDH electrocatalysts utilizing deep eutectic solvent-assisted hydrothermal strategies for the simultaneous detection of FL and NL. The CoFe-LDHs intercalated with three distinct anions, namely, (i) Cl-, (ii) SO42-, and (iii) CO32- are compared so as to establish a relationship between anion intercalation and electrochemical activity. Amongst the prepared electrodes, the CF-LDH-ii/SPCE displays highly appreciable selectivity, linear response range (0.09-237.9 μM), low detetion limits (FL = 1.2 nM and NL = 3.8 nM), high sensitivity (FL = 29.71 μA μM⁻1 cm⁻2 and NL = 19.29 μA μM⁻1 cm⁻2), good reproducibility and repeatability towards FL and NL in water and urine samples. Thus, with tailored gallery anions, the proposed electrocatalyst establishes enhanced electrocatalytic performance for the real-time analysis of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India; Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala, 673592, India
| | - Megha Maria Stanley
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India.
| |
Collapse
|
15
|
Zeng YT, Xu MY, Wang T, Wu SY, Zhang J, Mu SC, Yu J. Ru-decorated cobalt-iron oxide nanosheet arrays derived from MOF and LDH double-precursors for overall water splitting in alkali and seawater. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Shamloofard M, Shahrokhian S. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis. Inorg Chem 2023; 62:1178-1191. [PMID: 36607645 DOI: 10.1021/acs.inorgchem.2c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increasing demands for pollution-free energy resources have stimulated intense research on the design and fabrication of highly efficient, inexpensive, and stable non-noble earth-abundant metal catalysts with remarkable catalytic activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Morphology control of the catalysts is widely implemented as an effective strategy to change the surface atomic coordination and increase the catalytic behavior of the catalysts. In this study, we have designed a series of Mn-Co catalyts with different morphologies on the graphite paper substrate to enhance OER and HER activities in alkaline media. The prepared catalysts with different morphologies were successfully obtained by adjusting the amount of ammonium fluoride (NH4F) in the hydrothermal process. The electrochemical tests display that the cubic-like Mn-Co catalyst with pyramids on the faces at a concentration of 0.21 M NH4F exhibits the best activity toward both OER and HER. The cubic-like Mn-Co catalyst with pyramids on the faces showed overpotentials of 240 and 82 mV at a current density of 10 mA cm-2 for OER and HER, respectively. Also, the cubic-like Mn-Co catalyst with pyramids on the faces required overpotentials of 319 and 216 mV to reach the current density of 100 mA cm-2 for OER and HER, respectively. The current density of this catalyst at η = 0.32 V was 701.05 mA cm-2 for OER, and for HER, the current density of the catalyst was 422.89 mA cm-2 at η = 0.23 V. The Tafel slopes of the Mn-Co catalyst with cubic-like structures with pyramids on the faces were 78 and 121 mV dec-1 for OER and HER, respectively. A two-electrode overall water electrolysis system using this bifunctional Mn-Co catalyst exhibited low cell voltages of 1.60 in the alkaline electrolyte at the standard current density of 10 mA cm-2 with appropriate stability. These electrochemical merits exhibit the considerable potential of the cubic-like Mn-Co catalyst with pyramids on the faces for bifunctional OER and HER applications.
Collapse
Affiliation(s)
- Maryam Shamloofard
- Department of Chemistry, Sharif University of Technology, Tehran11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran11155-9516, Iran
| |
Collapse
|
17
|
Shankar Naik S, Theerthagiri J, Nogueira FS, Lee SJ, Min A, Kim GA, Maia G, Pinto LM, Choi MY. Dual-Cation-Coordinated CoFe-Layered Double-Hydroxide Nanosheets Using the Pulsed Laser Ablation Technique for Efficient Electrochemical Water Splitting: Mechanistic Screening by In Situ/Operando Raman and Density Functional Theory Calculations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shreyanka Shankar Naik
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Fabio Sobral Nogueira
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gyeong-Ah Kim
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Leandro M.C. Pinto
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| |
Collapse
|
18
|
Yu R, Wang C, Liu D, Wang X, Yin J, Du Y. Self-Reconstruction of Fe-Doped Co-Metal-Organic Frameworks Boosted Electrocatalytic Performance for Oxygen Evolution Reaction. Inorg Chem 2023; 62:609-617. [PMID: 36573767 DOI: 10.1021/acs.inorgchem.2c03929] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rational design of facile and low-cost efficient electrocatalysts for oxygen evolution reaction (OER) is crucial to solve the energy crisis. Benefiting from in situ self-reconstruction from metal-organic frameworks (MOFs) to (oxy)hydroxides in alkaline electrolytes, MOFs have become alternative OER catalysts. Thus, Fe-doped Co-MOF nanosheets (Co-MOF/Fe) were prepared and utilized straightforwardly as OER electrocatalysts. CoFe-layered bimetallic hydroxides (CoFe-LDHs) with abundant active sites are obtained from in situ conversion of Co-MOF/Fe after etching by the KOH electrolyte, which are generally actual active species. Meanwhile, the introduction of Fe ions will also produce a synergistic effect that greatly improves the electrocatalytic OER performance. The optimized catalyst (Co-MOF/Fe10) shows exceptional OER activity (η10 = 260 mV) and excellent durability over 50 h. The outstanding OER performance of Co-MOF/Fe10 can also be reflected in the two-electrode hydrolyzer (1.57 V at 10 mA cm-2). This study offers a pathway to probe the catalytic mechanism of MOFs and the rational construction of efficient MOF-derived catalysts.
Collapse
Affiliation(s)
- Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.,School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, P. R. China
| |
Collapse
|
19
|
N Dhandapani H, Karmakar A, Selvasundarasekar SS, Kumaravel S, Nagappan S, Madhu R, Ramesh Babu B, Kundu S. Modulating the Surface Electronic Structure of Active Ni Sites by Engineering Hierarchical NiFe-LDH/CuS over Cu Foam as an Efficient Electrocatalyst for Water Splitting. Inorg Chem 2022; 61:21055-21066. [PMID: 36523209 DOI: 10.1021/acs.inorgchem.2c03589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.
Collapse
Affiliation(s)
- Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - B Ramesh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
20
|
Pan Y, Sanati S, Abazari R, Noveiri VN, Gao J, Kirillov AM. Pillared-MOF@NiV-LDH Composite as a Remarkable Electrocatalyst for Water Oxidation. Inorg Chem 2022; 61:20913-20922. [PMID: 36521012 DOI: 10.1021/acs.inorgchem.2c03327] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxygen evolution reaction (OER) represents a highly important electrochemical transformation in energy storage and conversion technologies. Considering the low rate of this four-electron half-reaction, there is a demand for efficient, stable, and noble-metal-free electrocatalysts to improve the kinetic and economical parameters. In this work, a new pillared-MOF@NiV-LDH nanocomposite based on a CoII metal-organic framework (pillared-MOF) and heterometallic Ni/V-layered double hydroxide (NiV-LDH) was assembled via a simple protocol, characterized, and explored as an electrocatalyst in OER. A remarkable electrocatalytic efficiency of pillared-MOF@NiV-LDH in 1 M KOH is evidenced by a low overpotential (238 mV at 10 mA cm-2 current density) and a small value of the Tafel slope (62 mV dec-1). These parameters are very close to those of the reference IrO2 electrocatalyst and are superior to the majority of the LDH- and MOF-based systems previously applied for OER. Excellent stability of pillared-MOF@NiV-LDH was confirmed by the chronopotentiometry tests for 70 h and linear-sweep voltammetry after 7000 cycles. Features such as rich electroactive sites, porous structure, high surface area, and synergic effect between pillared-MOF and NiV-LDH are likely responsible for the remarkable electrocatalytic efficiency of this electrocatalyst in OER. Despite prior reports on the application of NiV-LDH in OER, the present study describes the first example where this type of LDH is blended with MOF to generate a nanocomposite material. The interface between the two components of the composite can improve the electronic structure and, in turn, the electrocatalytic behavior. The introduction of this composite paves the way toward the synthesis of other multicomponent materials with potential applications in different energy fields.
Collapse
Affiliation(s)
- Yangdan Pan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran
| | - Vahid Navvar Noveiri
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
21
|
Erdil T, Lokcu E, Yildiz I, Okuyucu C, Kalay YE, Toparli C. Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba 2CoMnO 6-δ as a New Member in Double Perovskite Oxides. ACS OMEGA 2022; 7:44147-44155. [PMID: 36506127 PMCID: PMC9730773 DOI: 10.1021/acsomega.2c05627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Perovskite oxides have been considered promising oxygen evolution reaction (OER) electrocatalysts due to their high intrinsic activity. Yet, their poor long-term electrochemical and structural stability is still controversial. In this work, we apply an A-site management strategy to tune the activity and stability of a new hexagonal double perovskite oxide. We synthesized the previously inaccessible 2H-Ba2CoMnO6-δ (BCM) perovskite oxide via the universal sol-gel method followed by a novel air-quench method. The new 2H-BCM perovskite oxide exhibits outstanding OER activity with an overpotential of 288 mV at 10 mA cm-2 and excellent long-term stability without segregation or structural change. To understand the origin of outstanding OER performance of BCM, we substitute divalent Ba with trivalent La at the A-site and investigate crystal and electronic structure change. Fermi level and valence band analysis presents a decline in the work function with the Ba amount, suggesting a structure-oxygen vacancy-work function-activity relationship for Ba x La2-x CoMnO6-δ (x = 0, 0.5, 1, 1.5, 2) electrocatalysts. Our work suggests a novel production strategy to explore the single-phase new structures and develop enhanced OER catalysts.
Collapse
Affiliation(s)
- Tuncay Erdil
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ersu Lokcu
- Department
of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ilker Yildiz
- Central
Laboratory, Middle East Technical University, 06800 Ankara, Turkey
| | - Can Okuyucu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Yunus Eren Kalay
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Cigdem Toparli
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
22
|
Kuchipudi A, Nagappan S, Karmakar A, Sreedhar G, Kundu S. Stabilization of Ru NPs over 3D LaCrO 3 Nanostructures for High-Performance HER Catalysts in Acidic Media. Inorg Chem 2022; 61:19407-19416. [DOI: 10.1021/acs.inorgchem.2c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Anup Kuchipudi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu630003, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu630003, India
| | - Gosipathala Sreedhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu630003, India
| |
Collapse
|
23
|
Bera K, Madhu R, Dhandapani HN, Nagappan S, De A, Kundu S. Accelerating the Electrocatalytic Performance of NiFe-LDH via Sn Doping toward the Water Oxidation Reaction under Alkaline Condition. Inorg Chem 2022; 61:16895-16904. [PMID: 36221930 DOI: 10.1021/acs.inorgchem.2c02947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Aditi De
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
24
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Kushwaha S, Nagarajan R. Magnetic properties of Sn- and Mn-incorporated Co 2TiO 4 from single-step calcination. Dalton Trans 2022; 51:13022-13031. [PMID: 35968920 DOI: 10.1039/d2dt00763k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report deals with the rapid synthesis of cobalt titanate spinels (Co2TiO4 (CTO), Co2Sn0.50Ti0.50O4 (CSTO), and Co2Mn0.50Ti0.50O4 (CMTO) by the single-step calcination of hydroxide precursors and their extensive characterization. The cubic unit cell expanded and contracted when Ti in CTO was partially replaced with Sn and Mn, respectively. The Raman spectra confirmed the cubic spinel structure and showed a systematic shift with the inclusion of tin and manganese. The broadening of Raman bands suggested cation disorder. The absorbance spectra of CTO and CSTO proved the existence of cobalt in the +2 and +3 states with optical bandgaps of 0.6 and 1.1 eV, respectively. X-ray photoelectron spectroscopic (XPS) analysis confirmed the presence of cobalt in both the +2 and +3 states with titanium in the +3 state in CTO. While cobalt and titanium existed in the +2 and +3 states in CMTO, mixed-valence (+3 (minor) and +4 (major amounts) states) was deduced for manganese. All these samples showed an exchange-bias effect and a long-range ferrimagnetic ordering with TN of 50 (CTO), 46 (CSTO), and 54 K (CMTO). These transitions have been independently verified from heat capacity measurements performed at zero fields and applied fields of 500 and 1000 Oe. The compensation of magnetic moments from the tetrahedral and octahedral units of the spinel structure was not observed in any of these samples, perhaps because of the asymmetric distribution of cations among the available crystallographic sites.
Collapse
Affiliation(s)
- Shreya Kushwaha
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Rajamani Nagarajan
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
26
|
Devising SrFe2O4 spinel nanoflowers as highly efficient catalyst for enhanced electrochemical water oxidation in different basic concentration. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Selvasundarasekar SS, Bijoy TK, Kumaravel S, Karmakar A, Madhu R, Bera K, Nagappan S, Dhandapani HN, Lee SC, Kundu S. Constructing electrospun spinel NiFe 2O 4 nanofibers decorated with palladium ions as nanosheets heterostructure: boosting electrocatalytic activity of HER in alkaline water electrolysis. NANOSCALE 2022; 14:10360-10374. [PMID: 35708550 DOI: 10.1039/d2nr02203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFe2O4-NFs) via an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium. The catalytic efficiency of the NiFe2O4-NFs in OER was highly satisfactory. But it is not high enough to catalyse the HER process. Hence, palladium ions were decorated as nanosheets on NiFe2O4-NFs as a heterostructure to improve the catalytic efficiency for HER. Density functional theory (DFT) confirms that the addition of palladium to NiFe2O4-NFs helps to reduce the effect of catalyst poisoning and improve the efficiency of the catalyst. In an alkaline hybrid electrolyser, the required cell voltage was observed as 1.51 V at a fixed current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - T K Bijoy
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru-560065, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru-560065, India
- Electronic Materials Research Center, KIST, Seoul 136-791, South Korea
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
28
|
Gratious S, Karmakar A, Kumar D, Kundu S, Chakraborty S, Mandal S. Incorporating Au 11 nanoclusters on MoS 2 nanosheet edges for promoting the hydrogen evolution reaction at the interface. NANOSCALE 2022; 14:7919-7926. [PMID: 35593268 DOI: 10.1039/d2nr00878e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) holds grip as a promising strategy to obtain renewable energy resources in the form of clean fuel - hydrogen (H2). However, understanding the catalytic mechanism at the atomic level for sustainable and efficient production of hydrogen remains an arduous challenge. In this regard, atomically precise nanoclusters (NCs) with their molecule-like properties can be utilized for a better understanding of the mechanism at the catalytic interface, identification of active sites, and much more. Herein, we report a strategy to enhance the HER activity of the well-known electrocatalyst MoS2 by the incorporation of atomically precise gold nanoclusters, Au11(PPh3)7I3. Interestingly, Au11(PPh3)7I3 NCs were impregnated onto MoS2 nanosheets without protecting ligands as naked Au11 clusters which have increased atom efficiency. Different loadings of Au11(PPh3)7I3 nanoclusters on MoS2 nanosheets revealed the superior HER activity of 2% loading of the NCs. Theoretical calculations have shown that the nanocomposite has the optimum hydrogen adsorption energy that is crucial for efficient H2 production. Combined experimental and theoretical results provide the atomic-level understanding of the utilization of electrochemically dormant ligand-protected NCs to accelerate the HER activity of MoS2 nanosheets.
Collapse
Affiliation(s)
- Saniya Gratious
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India.
| | - Arun Karmakar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| | - Dhirendra Kumar
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala-695551, India.
| |
Collapse
|
29
|
Karmakar A, Das T, Karthick K, Kumaravel S, Selvasundarasekar SS, Madhu R, Chakraborty S, Kundu S. Tuning the Electronic Structure of a Ni-Vacancy-Enriched AuNi Spherical Nanoalloy via Electrochemical Etching for Water Oxidation Studies in Alkaline and Neutral Media. Inorg Chem 2022; 61:8570-8584. [PMID: 35613470 DOI: 10.1021/acs.inorgchem.2c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Internal Ni-vacancy-enriched spherical AuNi nanoalloys (AuNi1-2-T) have been prepared via a noble electrochemical etching method. AuNi1.5-T showed the highest oxygen evolution reaction (OER) activity compared to bare AuNi1.5, and it demands only 239 mV overpotential, which was 134 mV lesser than the overpotential required by commercial RuO2 at 10 mA cm-2 current density in a 1 M KOH solution (pH = 14). The calculated turnover frequency (TOF) value for AuNi1.5-T (0.0229 s-1) was 11.74 times higher than that of AuNi1.5 (0.00195 s-1). Also, the electrochemically activated AuNi1.5-T showed superior neutral water oxidation activity by demanding only 335 mV overpotential with a TOF value of 0.000135 s-1 in a 1 M Na2SO4 solution (pH = 7) at 10 mA cm-2. The long-term stability studies (over 60 h) reveal the excellent robustness of an electrochemically treated alloy system. Density functional theory based electronic structure calculations showed that in the case of AuNi and AuNi1.5, Au d, Au s, and Ni d orbitals have significant contributions, whereas in the Ni-vacant systems, the density of states is mainly governed by d orbitals of Au and Ni. Also, the Ni-vacant system possesses a work function value of 4.96 eV, which is lower than that of the pristine system (5.27 eV) and thereby favored OH- binding with an optimum adsorption energy. This result is in reasonable agreement with the experimental outcome of an accelerated OER in a vacancy-enriched Ni-rich AuNi alloy system. Also, mechanistic analysis reveals that the creation of a Ni vacancy can effectively alter the overall mechanism of the OER and thereby facilitate the same with a lower applied energy.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Tisita Das
- Materials Theory for Energy Scavenging Laboratory, Harish-Chandra Research Institute Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj, Allahabad 211009, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging Laboratory, Harish-Chandra Research Institute Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj, Allahabad 211009, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India.,Electrochemical Process Engineering Division, Council of Scientific and Industrial Research, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu 630003, India
| |
Collapse
|
30
|
Shakir I, Almutairi Z, Shar SS. Fabrication of nanostructured iron-cobalt layered double hydroxide: An innovative approach for the facile synthesis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
In-system synthesize Fe nanodots-doped Ni hydroxide nanoflakes on Ni foam for efficient oxygen evolution catalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Chen Y, Chen J, Zhang J, Xue Y, Wang G, Wang R. Anchoring Highly Dispersed Pt Electrocatalysts on TiO x with Strong Metal-Support Interactions via an Oxygen Vacancy-Assisted Strategy as Durable Catalysts for the Oxygen Reduction Reaction. Inorg Chem 2022; 61:5148-5156. [PMID: 35289604 DOI: 10.1021/acs.inorgchem.2c00329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pt electrocatalysts with high activity and durability have still crucial issues for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this study, a novel catalyst consisting of Pt nanoparticles (NPs) on TiOx/C composites (TiOx-Vo-H/C) with abundant oxygen vacancies (Vo) is proposed, which is abbreviated as PTO-Vo-H/C. The introduction of Vo helps anchor highly dispersed Pt NPs with low loading and strengthen the strong metal-support interaction (SMSI), which benefits to the enhanced ORR catalytic activity. Moreover, the accelerated durability test (ADT) demonstrates the higher retention of ORR activity for PTO-Vo-H/C. Experimental and theoretical analyses reveal that electronic interactions between Pt NPs and TiOx/C composite support give rise to an electron-rich Pt NPs and strong SMSI effect, which is favorable for the electron transfer and stabilization of Pt NPs. More importantly, the assembled PEMFC with PTO-Vo-H/C shows only 6.9% of decay on maximum power density after 3000 ADT cycles while the performance of Pt/C sharply decreased. This work provides a new insight into the unique vacancy regulation of dispersive Pt on metal oxides for superior ORR performance.
Collapse
Affiliation(s)
- Yihan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.,Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Yali Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, PR China.,Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, Sichuan Province, PR China
| |
Collapse
|
33
|
Bera K, Karmakar A, Kumaravel S, Sam Sankar S, Madhu R, N Dhandapani H, Nagappan S, Kundu S. Vanadium-Doped Nickel Cobalt Layered Double Hydroxide: A High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline Medium. Inorg Chem 2022; 61:4502-4512. [PMID: 35230844 DOI: 10.1021/acs.inorgchem.2c00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts via water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions. In this work, we have reported the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method. The synthesized NiCoV-LDH possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium. In the study of OER activity, the as-prepared catalyst demanded 280 mV overpotential and this was 42 mV less than the overpotential essential for pristine NiCo-LDH. Moreover, doping of a third metal into the NiCo-LDH system might lead to an increase in TOF values by almost three times. Apart from this, the electronic structural evaluation confirms that the doping of V3+ into NiCo-LDH could synergistically favor the electron transfer among the metal ions, which in turn increases the activity of the prepared catalyst toward the OER.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
34
|
Zhang M, Zhou L, Du X, Huang X, Liu H, Wang Q, Guo L, Wang H. Rapid In-Situ Growth of Oxygen-defects Rich Fe(OH)3@Co(OH)2@NF Nanoarray as Efficient OER Electrocatalyst. CHEM LETT 2022. [DOI: 10.1246/cl.210814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengyuan Zhang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Lina Zhou
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xuena Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Xianmin Huang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hui Liu
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Qingbo Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Long Guo
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| | - Hai Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430079, P. R. China
| |
Collapse
|
35
|
Deng B, Liang J, Yue L, Li T, Liu Q, Liu Y, Gao S, Alshehri AA, Alzahrani KA, Luo Y, Sun X. CoFe-LDH nanowire arrays on graphite felt: A high-performance oxygen evolution electrocatalyst in alkaline media. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Madhu R, Karmakar A, Kumaravel S, Sankar SS, Bera K, Nagappan S, Dhandapani HN, Kundu S. Revealing the pH-Universal Electrocatalytic Activity of Co-Doped RuO 2 toward the Water Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1077-1091. [PMID: 34951298 DOI: 10.1021/acsami.1c20752] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic water splitting has gained vast attention in recent decades for its role in catalyzing hydrogen production effectively as an alternative to fossil fuels. Moreover, the designing of highly efficient oxygen evolution reaction (OER) electrocatalysts across the universal pH conditions was more challengeable as in harsh anodic potentials, it questions the activity and stability of the concerned catalyst. Generally, geometrical engineering and electronic structural modulation of the catalyst can effectively boost the OER activity. Herein, a Co-doped RuO2 nanorod material is developed and used as an OER electrocatalyst at different pH conditions. Co-RuO2 exhibits a lower overpotential value of 238 mV in an alkaline environment (1 M KOH) with a Tafel slope value of 48 mV/dec. On the other hand, in acidic, neutral, and near-neutral environments, it required overpotentials of 328, 453, and 470 mV, respectively, to attain a 10 mA/cm2 current density. It is observed that doping of Co into the RuO2 could synergistically increase the active sites with the enhanced electrophilic nature of Ru4+ to accelerate OER in all of the pH ranges. This study finds the applicability of earth-abundant-based metals like Co to be used in universal pH conditions with a simple doping technique. Further, it assured the stable nature in all pH electrolytes and needs to be further explored with other metals in the future.
Collapse
Affiliation(s)
- Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| |
Collapse
|
37
|
Dou Y, Yuan D, Yu L, Zhang W, Zhang L, Fan K, Al-Mamun M, Liu P, He CT, Zhao H. Interpolation between W Dopant and Co Vacancy in CoOOH for Enhanced Oxygen Evolution Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104667. [PMID: 34693576 DOI: 10.1002/adma.202104667] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.
Collapse
Affiliation(s)
- Yuhai Dou
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
- Shandong Institute of Advanced Technology, Jinan, 250100, China
| | - Ding Yuan
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Linping Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China
| | - Weiping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lei Zhang
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Kaicai Fan
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| | - Chun-Ting He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
38
|
Wang T, Hong Z, Sun F, Wang B, Jian C, Liu W. Interfacial engineering of tungstic disulfide–carbide heterojunction for high-current-density hydrogen evolution. RSC Adv 2022; 12:27225-27229. [PMID: 36276027 PMCID: PMC9511689 DOI: 10.1039/d2ra04685g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Developing low-cost and high-efficiency electrocatalysts to electrolyze water is an effective method for large-scale hydrogen production. For large-scale commercial applications, it is crucial to call for more efficient electrocatalysts with high-current density (≥1000 mA cm−2). However, it is challenging to simultaneously promote the large-scale production and hydrogen evolution reaction (HER) activity of these hydrogen catalysts. Herein, we report the large area tungstic disulfide–carbide (W/WS2–WC) heterojunction electrode vertically grown on an industrial-grade tungsten substrate by the solid-state synthesis method. The W/WS2–WC heterojunction electrode achieves a low overpotential of 473 mV at 1000 mA cm−2 in alkaline electrolytes. We report the large-area tungstic disulfide–carbide (WS2–WC) heterojunction with abundant interfaces grown on W substrates via a facile solid-state synthesis method.![]()
Collapse
Affiliation(s)
- TaiKun Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhaoan Hong
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fapeng Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bicheng Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chuanyong Jian
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wei Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
39
|
Sarkar D, Ganguli S, Mondal A, Mahalingam V. Boosting Surface Reconstruction for the Oxygen Evolution Reaction: A Combined Effect of Heteroatom Incorporation and Anion Etching in Cobalt Silicate Precatalyst. ChemElectroChem 2021. [DOI: 10.1002/celc.202101140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Debashrita Sarkar
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Sagar Ganguli
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
- Department of Chemistry Ångström Laboratory, Molecular Biomimetics, Uppsala University 75120 Uppsala Sweden
| | - Ayan Mondal
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
40
|
Bera K, Karmakar A, Karthick K, Sankar SS, Kumaravel S, Madhu R, Kundu S. Enhancement of the OER Kinetics of the Less-Explored α-MnO 2 via Nickel Doping Approaches in Alkaline Medium. Inorg Chem 2021; 60:19429-19439. [PMID: 34821497 DOI: 10.1021/acs.inorgchem.1c03236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of a low-cost transition metal-based catalyst for water splitting is of prime importance for generating green hydrogen on an industrial scale. Recently, various transition metal-based oxides, hydroxides, sulfides, and other chalcogenide-based materials have been synthesized for developing a suitable anode material for the oxygen evolution reaction (OER). Among the various transition metal-based catalysts, their oxides have received much consideration for OER, especially in lower pH condition, and MnO2 is one of the oxides that have widely been used for the same. The large variation in the structural disorder of MnO2 and internal resistance at the electrode-electrolyte interfaces have limited its large-scale application. By considering the above limitations of MnO2, here in this work, we have designed Ni-doped MnO2 via a simple wet-chemical synthetic route, which has been successfully applied for OER application in 0.1 M KOH solution. Doping of various quantities of Ni into the MnO2 lattices improved the OER properties, and for achieving 10 mA/cm2 current density, the Ni-doped MnO2 containing 0.02 M of Ni2+ ions (coined as MnO2-Ni0.002(M)) demands only 445 mV overpotential, whereas the bare MnO2 required 610 mV overpotential. It has been proposed that the incorporation of nickel ions into the MnO2 lattices leads to an electron transfer from the Ni3+ ions to Mn4+, which in turn facilitates the Jahn-Teller distortion in the Mn-O octahedral unit. This electron transfer and the creation of a structural disorder in the Mn sites result in the improvization of the OER properties of the MnO2 materials.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
41
|
Shi W, Zhang Y, Bo L, Guan X, Wang Y, Tong J. Ce-Substituted Spinel CuCo 2O 4 Quantum Dots with High Oxygen Vacancies and Greatly Improved Electrocatalytic Activity for Oxygen Evolution Reaction. Inorg Chem 2021; 60:19136-19144. [PMID: 34839658 DOI: 10.1021/acs.inorgchem.1c02931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exploring effective electrocatalysts for oxygen evolution reaction (OER) is a crucial requirement of many energy storage and transformation systems, involving fuel cells, water electrolysis, and metal-air batteries. Transition-metal oxides (TMOs) have attracted much attention to OER catalysts because of their earth abundance, tunable electronic properties, and so forth. Defect engineering is a general and the most important strategy to tune the electronic structure and control size, and thus improve their intrinsic activities. Herein, OER performance on spinel CuCo2O4 was greatly enhanced through cation substitution and size reduction. Ce-substituted spinel CuCeδCo2-δOx (δ = 0.45, 0.5 and 0.55) nanoparticles in the quantum dot scale (2-8 nm) were synthesized using a simple and facile phase-transfer coprecipitation strategy. The as-prepared samples were highly dispersed and have displayed a low overpotential of 294 mV at 10 mA·cm-2 and a Tafel slope of 57.5 mV·dec-1, which outperform commercial RuO2 and the most high-performance analogous catalysts reported. The experimental and calculated results all confirm that Ce substitution with an appropriate content can produce rich oxygen vacancies, tune intermediate absorption, consequently lower the energy barrier of the determining step, and greatly enhance the OER activity of the catalysts. This work not only provides advanced OER catalysts but also opens a general avenue to understand the structure-activity relationship of pristine TMO catalysts deeply in the quantum dot scale and the rational design of more efficient OER catalysts.
Collapse
Affiliation(s)
- Wenping Shi
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yuning Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lili Bo
- College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolin Guan
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yunxia Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730070, China
| | - Jinhui Tong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
42
|
Kori DKK, Jadhav RG, Dhruv L, Das AK. A platinum nanoparticle doped self-assembled peptide bolaamphiphile hydrogel as an efficient electrocatalyst for the hydrogen evolution reaction. NANOSCALE ADVANCES 2021; 3:6678-6688. [PMID: 36132646 PMCID: PMC9419667 DOI: 10.1039/d1na00439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/11/2021] [Indexed: 06/16/2023]
Abstract
Noble metal-based nanomaterials have shown great potential for catalytic application with higher selectivity and activity. Owing to their self-assembly properties with various molecular interactions, peptides play an essential role in the controlled synthesis of noble metal-based catalysts with high surface area. In this work, a phenylalanine (F) and tyrosine (Y) based peptide bolaamphiphile is prepared by solution-phase peptide synthesis. The peptide bolaamphiphile readily self-assembles into a hydrogel with a cross-linked nanofibrillar network. The platinum nanoparticles (Pt NPs) are in situ generated within the cross-linked nanofibrillar network of the hydrogel matrix of the peptide bolaamphiphile. Benefiting from the synergistic properties of the Pt nanoparticles doped on three-dimensional fibrous networks, Pt6@hydrogel shows efficient catalytic activity for the electrochemical hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution. The Pt6@hydrogel requires an overpotential of 45 mV at -10 mA cm-2 with a Tafel slope of 52 mV dec-1. The Pt6@hydrogel also shows electrocatalytic activity in basic and neutral pH solutions. The excellent activity and stability of Pt6@hydrogel for the HER shows great potential for energy conversion applications.
Collapse
Affiliation(s)
- Deepak K K Kori
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Rohit G Jadhav
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Likhi Dhruv
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Apurba K Das
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
43
|
Madhu R, Karmakar A, Karthick K, Sam Sankar S, Kumaravel S, Bera K, Kundu S. Metallic Gold-Incorporated Ni(OH) 2 for Enhanced Water Oxidation in an Alkaline Medium: A Simple Wet-Chemical Approach. Inorg Chem 2021; 60:15818-15829. [PMID: 34601871 DOI: 10.1021/acs.inorgchem.1c02571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a highly efficient electrocatalyst for the oxygen evolution reaction (OER) with a lower overpotential and high intrinsic activity is highly challenging owing to its sluggish kinetic behavior. As an alternative to the state-of-the-art OER catalyst, recently, transition-metal-based hydroxide materials have been shown to play important roles for the same. Owing to the high earth abundance of various Ni-based hydroxide and its derivatives, these are known to be highly studied materials for the OER. Herein, we report a simple wet-chemical synthesis of metallic gold-incorporated (by varying the concentration of Au3+ ions) Ni(OH)2 nanosheets as an active and stable electrocatalyst for the OER in 1 M KOH medium. The Au-Ni(OH)2 (2) catalyst demanded a low overpotential of 288 mV to attain a geometric current density of 10 mA/cm2 with a lower Tafel value of 55 mV/dec compared to bare Ni(OH)2 with a lower mass loading of only 0.1 mg/cm2. Tafel slope analysis reveals that the incorporation of metallic gold on the hydroxide surfaces could alter the mechanistic pathways of the overall OER reaction. It has been proposed that the incorporation of metallic gold over the Ni(OH)2 surfaces led to a change in the electronic structure of the electroactive nickel sites (Jahn-Teller distortion), which favors the OER by electronic aspects.
Collapse
Affiliation(s)
- Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
44
|
Ganguli S, Ghosh S, Tudu G, Koppisetti HVSRM, Mahalingam V. Design Principle of Monoclinic NiCo 2Se 4 and Co 3Se 4 Nanoparticles with Opposing Intrinsic and Geometric Electrocatalytic Activity toward the OER. Inorg Chem 2021; 60:9542-9551. [PMID: 34143621 DOI: 10.1021/acs.inorgchem.1c00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite predictions of high electrocatalytic OER activity by selenide-rich phases, such as NiCo2Se4 and Co3Se4, their synthesis through a wet-chemical route remains a challenge because of the high sensitivity of the various oxidation states of selenium to the reaction conditions. In this work, we have determined the contribution of individual reactants behind the maintenance of conducive solvothermal reaction conditions to produce phase-pure NiCo2Se4 and Co3Se4 from elemental selenium. The maintenance of reductive conditions throughout the reaction was found to be crucial for their synthesis, as a decrease in the reductive conditions over time was found to produce nickel/cobalt selenites as the primary product. Further, the reluctance of Ni(II) to oxidize into Ni(III) in comparison to the proneness of Co(II) to Co(III) oxidation was found to have a profound effect on the final product composition, as a deficiency of ions in the III oxidation state under nickel-rich reaction conditions hindered the formation of a monoclinic "Co3Se4-type" phase. Despite its lower intrinsic OER activity, Co3Se4 was found to show geometric performance on a par with NiCo2Se4 by virtue of its higher textural and microstructural properties.
Collapse
Affiliation(s)
- Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
45
|
Madhu R, Sankar SS, Karthick K, Karmakar A, Kumaravel S, Kundu S. Electrospun Cobalt-Incorporated MOF-5 Microfibers as a Promising Electrocatalyst for OER in Alkaline Media. Inorg Chem 2021; 60:9899-9911. [PMID: 34134481 DOI: 10.1021/acs.inorgchem.1c01151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal-organic framework (MOF)-based materials have attracted attention in recent times owing to their remarkable properties such as regulatable pore size, high specific surface area, and elasticity in their network topology, geometry, dimension, and chemical functionality. It is believed that the incorporation of a MOF network into a fibrous matrix results in the improvement of the electrocatalytic properties of the material. Herein, we have synthesized a Co-incorporated MOF-5-based fibrous material by a simple wet-chemical method, followed by an electrospinning (ES) process. The as-prepared Co-incorporated MOF-5 microfibers were employed as an electrocatalyst for the oxygen evolution reaction (OER) in 1 M KOH electrolyte. The catalyst demands a lower overpotential of 240 mV to attain a current density of 10 mA/cm2 with a lower Tafel slope value of 120 mV/dec along with a charge transfer resistance value of 2.9 Ω from electron impedance spectroscopy (EIS) analysis. From these results, it has been understood that the incorporation of Co metal into the MOF-5 microfibrous network has significantly improved the OER performance, which made them a potential entrant in other energy-related applications also.
Collapse
Affiliation(s)
- Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
46
|
Gopi S, Selvamani V, Yun K. MoS 2 Decoration Followed by P Inclusion over Ni-Co Bimetallic Metal-Organic Framework-Derived Heterostructures for Water Splitting. Inorg Chem 2021; 60:10772-10780. [PMID: 34196173 DOI: 10.1021/acs.inorgchem.1c01478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrating a highly efficient non-noble bifunctional catalyst for complete water electrolysis remains challenging because of kinetic limitations and crucial importance for future energy harvesting. Herein, a low-cost, integrated composite of a Ni-Co metal-organic framework decorated with thin MoS2 nanosheets was synthesized by a simple hydrothermal method followed by carbonization and phosphorization for electrochemical oxygen and hydrogen evolution reactions. Such a composite heterostructure exhibits outstanding performance in the electrocatalysis process with a lower overpotential of 184 mV for the oxygen evolution reaction (OER) and 84 mV for the hydrogen evolution reaction (HER) in 1.0 M KOH and 0.5 M H2SO4 electrolytes to reach a current density of 10 mA cm-2, with a slight Tafel slope of 63 mV dec-1 for the OER and 96 mV dec-1 for the HER. The obtained results are far better than those of the commercial benchmark catalyst. Furthermore, online gas chromatography quantifies the amount of hydrogen generation in a symmetric cell as equal to 0.002121 moles with an energy efficiency of about 2.237 mg/kWh. Thus, the composite electrode's remarkable performance is further demonstrated as a potentially viable alternative non-noble electrocatalyst for energy conversion reactions.
Collapse
Affiliation(s)
- Sivalingam Gopi
- Department of BioNano Technology, Gachon University, GyeongGi -Do 13120, Republic of Korea
| | - Vadivel Selvamani
- Centre of Excellence for Energy Storage Technology (CEST), Vidyasirimedhi Institute of Science and technology, Rayong 21210, Thailand
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, GyeongGi -Do 13120, Republic of Korea
| |
Collapse
|
47
|
Guo ZH, Zhou LL, Pan DS, Huang S, Li JK, Song JL. Boosting electrocatalytic oxygen evolution activity of bimetallic CoFe selenite by exposing specific crystal facets. NEW J CHEM 2021. [DOI: 10.1039/d1nj01536b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It was of great significance to develop efficient and stable electrocatalysts for oxygen evolution reactions via simple and environmentally-friendly methods.
Collapse
Affiliation(s)
- Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jin-Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
48
|
Qi L, Wang M, Li X. Graphene-induced growth of Co3O4 nanoplates with modulable oxygen vacancies for improved OER properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene-induced growth of Co(OH)2 nanoplates from Co3O4 nanospheres was reported, showing an ultralow overpotential of 240 mV at 10 mA cm−2 and a Tafel slope of 107.8 mV dec−1.
Collapse
Affiliation(s)
- Lei Qi
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinheng Li
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|