1
|
Li G, Jiang S, Liu A, Ye L, Ke J, Liu C, Chen L, Liu Y, Hong M. Proof of crystal-field-perturbation-enhanced luminescence of lanthanide-doped nanocrystals through interstitial H + doping. Nat Commun 2023; 14:5870. [PMID: 37735451 PMCID: PMC10514317 DOI: 10.1038/s41467-023-41411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Crystal-field perturbation is theoretically the most direct and effective method of achieving highly efficient photoluminescence from trivalent lanthanide (Ln3+) ions through breaking the parity-forbidden nature of their 4f-transitions. However, exerting such crystal-field perturbation remains an arduous task even in well-developed Ln3+-doped luminescent nanocrystals (NCs). Herein, we report crystal-field perturbation through interstitial H+-doping in orthorhombic-phase NaMgF3:Ln3+ NCs and achieve a three-orders-of-magnitude emission amplification without a distinct lattice distortion. Mechanistic studies reveal that the interstitial H+ ions perturb the local charge density distribution, leading to anisotropic polarization of the F- ligand, which affects the highly symmetric Ln3+-substituted [MgF6]4- octahedral clusters. This effectively alleviates the parity-forbidden selective rule to enhance the 4f-4 f radiative transition rate of the Ln3+ emitter and is directly corroborated by the apparent shortening of the radiative recombination lifetime. The interstitially H+-doped NaMgF3:Yb/Er NCs are successfully used as bioimaging agents for real-time vascular imaging. These findings provide concrete evidence for crystal-field perturbation effects and promote the design of Ln3+-doped luminescent NCs with high brightness.
Collapse
Affiliation(s)
- Guowei Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shihui Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Aijun Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Lixiang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Jianxi Ke
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
| | - Caiping Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Lian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
| |
Collapse
|
2
|
Li P, Xu X, Zhao J, Awasthi P, Qiao X, Du J, Fan X, Qian G. Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Dong H, Sun LD, Yan CH. Local Structure Engineering in Lanthanide-Doped Nanocrystals for Tunable Upconversion Emissions. J Am Chem Soc 2021; 143:20546-20561. [PMID: 34865480 DOI: 10.1021/jacs.1c10425] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upconversion emissions from lanthanide-doped nanocrystals have sparked extensive research interests in nanophotonics, biomedicine, photovoltaics, photocatalysis, etc. Rational modulation of upconversion emissions is highly desirable to meet the requirements of specific applications. Among the diverse developed methods, local structure engineering is fundamentally feasible, through which the upconversion emission intensity, selectivity, wavelength shift, and lifetime can be tuned effectively. The underlying mechanism of the local-structure-dependent upconversion emissions lies in the degree of parity hybridization and energy level splitting of lanthanide ions as well as the interionic energy transfer efficiency. Over the past few years, there has been significant progress in local-structure-engineered upconversion emissions. In this Perspective, we first introduce the principles of upconversion emissions and typical characterization methods for local structure. Subsequently, we summarize recent achievements in tuning of upconversion emissions through local structure engineering, including host composition adjustment, external field regulation, and interfacial strain management. Finally, we propose a few perspectives that should tackle the current bottlenecks. This Perspective is expected to deepen the understanding of local-structure-dependent upconversion emissions and arouse adequate attention to the engineering of local structure for desired properties of inorganic nanocrystals.
Collapse
Affiliation(s)
- Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|