1
|
Niu C, Liu J, Wu Q, Liu S, Tan J, Zhang J. Chiral co-assembly of a polyoxometalate complex with an achiral pyrene derivative enables redox-modulated circularly polarized luminescence. NANOSCALE 2025; 17:9525-9533. [PMID: 40130353 DOI: 10.1039/d4nr05421k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
We report the fabrication of helical structures with responsive circularly polarized lumunescence (CPL) via the chiral co-assembly of a cholesterol-modified Lindqvist type polyoxometalate (POM) and an achiral pyrenyl derivative. The chiral surfactant encapsulated POM (CSEP) complex was synthesized by combining (TBA)2[Mo6O19] with cholesterol-containing organic surfactants through ion exchange. It was found that the CSEP complex self-assembled into left-handed helical structures in mixed organic solvents, which could serve as a chiral template that enables achiral pyrenyl fluorophores (Py) to exhibit chiroptical properties. When doping Py at a ratio of 5 wt% into the system, the chiral co-assembly with CSEP in the mixed organic solvent results in the formation of helical nanofibers, which emit blue CPL signals. Furthermore, the chiral helical structures can be dynamically transformed to spherical aggregates upon UV illumination, accompanied by photochromism. The disappearance of CPL signals corresponded to the disruption of the chiral morphology in the co-assembled nanostructures. More importantly, the morphology transformation is reversible. The nanospheres transform into helical nanofibers under the oxidation of H2O2, which could trigger the regeneration of CPL signals. This work contributes to the understanding and development of chiral supramolecular systems featuring stimulus-responsive CPL switches.
Collapse
Affiliation(s)
- Chengyan Niu
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China.
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Jiaqi Liu
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Qiulan Wu
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shuzhen Liu
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Jingjing Tan
- Research Center for Fine Chemicals Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Jing Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
2
|
Karbalaee Hosseini A, Moghadaskhou F, Tadjarodi A, Safarkoopayeh B. Dual-Ligand Strategy for the Design and Construction of a Cd-Zn Heterometallic Metal-Organic Framework by One-Pot Synthesis as a Heterogeneous Catalyst for the Epoxidation Reaction of Olefins. Inorg Chem 2023; 62:21156-21163. [PMID: 38096807 DOI: 10.1021/acs.inorgchem.3c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The use of metal-organic frameworks (MOFs) as catalysts is reported in various industrial applications. In contrast to monometallic MOFs, heterometallic MOFs with mixed organic ligands showed enhanced catalytic properties. The catalytic properties of heterometallic MOFs can be enhanced by generating defects and the synergistic effect between the two heterometals at secondary building units. By using a solvothermal technique, a Cd-Zn heterometallic MOF with a new morphology, [Cd2Zn(DPTTZ)0.5(OBA)3(H2O)(HCOOH)] (IUST-4) [DPTTZ = 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole, OBA = 4,4'-oxybis(benzoic acid)], was synthesized via a mixed-ligand strategy and characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. X-ray crystallographic analysis showed that IUST-4 is a neutral 3D metal-organic framework crystallized in the monoclinic system with space group C2/c. In this study, the catalytic properties of IUST-4 for the epoxidation of cyclooctene were investigated. IUST-4 was selected as the optimal catalyst for epoxy product production due to its high selectivity and yield. Moreover, the catalytic performance of IUST-4 was maintained despite five recycling cycles without significant degradation. The epoxidation of cyclooctene with IUST-4 has several advantages, including good selectivity, easy recovery, and short-time reaction.
Collapse
Affiliation(s)
- Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Barzin Safarkoopayeh
- School of Chemistry, College of Science, University of Tehran, 1417935840 Tehran, Iran
| |
Collapse
|
3
|
Liu G, Chen Y, Chen Y, Shi Y, Zhang M, Shen G, Qi P, Li J, Ma D, Yu F, Huang X. Indirect Electrocatalysis S─N/S─S Bond Construction by Robust Polyoxometalate Based Foams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304716. [PMID: 37392073 DOI: 10.1002/adma.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Indirect electrocatalytic conversion of cheap organic raw materials via the activation of S─H and N─H bonds into the value-added S─N/S─S bonds chemicals for industrial rubber production is a promising strategy to realize the atomic economic reaction, during which the kinetic inhibition that is associated with the electron transfer at the electrode/electrolyte interface in traditional direct electrocatalysis can be eliminated to achieve higher performance. In this work, a series of di-copper-substituted phosphotungstatebased foams (PW10 Cu2 @CMC) are fabricated with tunable loadings (17 to 44 wt%), which can be successfully applied in indirect electrocatalytic syntheses of sulfenamides and disulfides. Specifically, the optimal PW10 Cu2 @CMC (44 wt%) exhibits excellent electrocatalytic performance for the construction of S─N/S─S bonds (yields up to 99%) coupling with the efficient production of H2 (≈50 µmol g-1 h-1 ). Remarkably, it enables the scale-up production (≈14.4 g in a batch experiment) and the obtained products can serve as rubber vulcanization accelerators with superior properties to traditional industrial rubber additives in real industrial processes. This powerful catalysis system that can simultaneously produce rubber vulcanization accelerator and H2 may inaugurate a new electrocatalytic avenue to explore polyoxometalate-based foam catalysts in electrocatalysis field.
Collapse
Affiliation(s)
- Gang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yulu Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yanqi Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Meiyu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Pengfei Qi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271021, P. R. China
| | - Delong Ma
- National Rubber Additive Engineering Technology Center, Liaocheng, Shandong, 252059, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| |
Collapse
|
4
|
Nandan SP, Gumerova NI, Schubert JS, Saito H, Rompel A, Cherevan A, Eder D. Immobilization of a [Co IIICo II(H 2O)W 11O 39] 7– Polyoxoanion for the Photocatalytic Oxygen Evolution Reaction. ACS MATERIALS AU 2022; 2:505-515. [PMID: 35856075 PMCID: PMC9284608 DOI: 10.1021/acsmaterialsau.2c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ongoing transition
to renewable energy sources and the implementation
of artificial photosynthetic setups call for an efficient and stable
water oxidation catalyst (WOC). Here, we heterogenize a molecular
all-inorganic [CoIIICoII(H2O)W11O39]7– ({CoIIICoIIW11}) Keggin-type polyoxometalate (POM) onto a
model TiO2 surface, employing a 3-aminopropyltriethoxysilane
(APTES) linker to form a novel heterogeneous photosystem for light-driven
water oxidation. The {CoIIICoIIW11}-APTES-TiO2 hybrid is characterized using a set of spectroscopic
and microscopic techniques to reveal the POM integrity and dispersion
to elucidate the POM/APTES and APTES/TiO2 binding modes
as well as to visualize the attachment of individual clusters. We
conduct photocatalytic studies under heterogeneous and homogeneous
conditions and show that {CoIIICoIIW11}-APTES-TiO2 performs as an active light-driven WOC, wherein
{CoIIICoIIW11} acts as a stable co-catalyst
for water oxidation. In contrast to the homogeneous WOC performance
of this POM, the heterogenized photosystem yields a constant WOC rate
for at least 10 h without any apparent deactivation, demonstrating
that TiO2 not only stabilizes the POM but also acts as
a photosensitizer. Complementary studies using photoluminescence (PL)
emission spectroscopy elucidate the charge transfer mechanism and
enhanced WOC activity. The {CoIIICoIIW11}-APTES-TiO2 photocatalyst serves as a prime example of
a hybrid homogeneous–heterogeneous photosystem that combines
the advantages of solid-state absorbers and well-defined molecular
co-catalysts, which will be of interest to both scientific communities
and applications in photoelectrocatalysis and CO2 reduction.
Collapse
Affiliation(s)
- Sreejith P. Nandan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| | - Jasmin S. Schubert
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Hikaru Saito
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Vienna, Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC/02, 1060 Vienna, Austria
| |
Collapse
|