1
|
Lu C, Tang Z, Wang D, Chen L, Zhao J. Advances in polyoxometalate-based electrochemical sensors in the last three years. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5133-5145. [PMID: 39007918 DOI: 10.1039/d4ay01090f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As a famous subclass of metal-oxide cluster materials, polyoxometalates (POMs) feature variable architectures, reversible multi-electron transport capability, catalytic activity, and redox capacity. These attributes endow POMs with great potential as promising electrode materials in electrochemical sensors (ECSs). Up to now, POM-based ECSs have been passionately studied, and diverse POM-based redox ECSs, aptasensors and immunosensors have emerged. And these POM-based ECSs generally demonstrate fast response, low detection limit, strong selectivity and high antijamming capability. This review mainly focuses on the remarkable advancement of POM-based ECSs in environmental monitoring, food safety and biomedicine from 2021, aiming to furnish theoretical insights that inform the design and development of innovative sensors.
Collapse
Affiliation(s)
- Changyuan Lu
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Sun Y, Xie S, Tang Z, Zhao J, Chen L. An Innovative Sb III-W VI-Cotemplated Antimonotungstate with Potential in Sensing Paroxetine Electrochemically. Inorg Chem 2024; 63:7123-7136. [PMID: 38591874 DOI: 10.1021/acs.inorgchem.3c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advances in polyoxometalate (POM) self-assembly chemistry are always accompanied by new developments in molecular blocks. The exploration and discovery of uncommon building blocks offer great possibilities for generating unprecedented POM clusters. An intriguing SbIII-WVI-cotemplated antimonotungstate [H2N(CH3)2]11Na[SbW9O33]Er2(H2O)2Sb2[SbWVIW15O57]·22H2O (1) was synthesized, which comprises a classical trivacant Keggin [SbW9O33]9- ({SbW9}) fragment and an unclassical lacunary Dawson-like [SbWVIW15O57]15- ({SbWVIW15}) subunit. Notably, the Dawson-like {SbWVIW15} subunit is the first example of a [SbO3]3- and [WVIO6]6- mixed-heteroatom-directing POM segment. Hexacoordinated [WVIO6]6- can not only serve as the heteroatom function but its additional oxygen sites can also link to lanthanide, main-group metal, and transition-metal centers to form the innovative structure. {SbWVIW15} and {SbW9} subunits are joined by the heterometallic [Er2(H2O)2Sb2O17]22- cluster to give rise to an asymmetric sandwich-type architecture. To further realize its potential application in electrochemical sensing, a conductive 1@rGO composite was obtained by the electrochemical deposition of 1 with graphene oxide (GO). Using a 1@rGO-modified glassy carbon electrode as the working electrode, an electrochemical biosensor for detecting the antidepressant drug paroxetine (PRX) was successfully constructed. This work can provide a viable strategy for synthesizing mixed-heteroatom-directing POMs and demonstrates the application of POM-based materials for the electrochemical detection of drug molecules.
Collapse
Affiliation(s)
- Yancai Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
3
|
Yu L, Ye J, Li DH, Sun YQ, Li XX, Zheng ST. A tetrahedron-shaped polyoxoantimotungstate encapsulating a hexanuclear octahedral lanthanide-oxo cluster for an amperometric bromate sensor. Dalton Trans 2024; 53:5258-5265. [PMID: 38407346 DOI: 10.1039/d3dt03789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
An inorganic hexalanthanide-oxo-cluster-encapsulated antimotungstate, K2Na3H43[Nd6(OH)6(H2O)6(B-α-SbW9O33)4]2·67H2O (1), has been successfully synthesized by a facile one-step hydrothermal reaction method. The tetrahedron-shaped two-shell {Nd6(OH)6(H2O)6(B-α-SbW9O33)4}(1a) polyanion is composed of a novel pure lanthanide-oxo {Nd6(μ3-OH)6(H2O)6} octahedron and {(B-α-SbW9O33)4} tetrahedron. After being effectively loaded onto a glassy carbon electrode (GCE) by electrostatic adsorption using polydiallyldimethyl ammonium chloride (PDDA)-functionalized multi-walled carbon nanotubes (MWCNTs), compound 1 exhibits electrochemical activity for the reduction of bromate ions with good selectivity, a high sensitivity of 186 μA mM-1 and a detection limit that has reached 1.9 μM. To the best of our knowledge, this is the first example of an amperometric bromate sensor based on Ln-containing antimotungstates, which will provide new materials for electrochemical sensors.
Collapse
Affiliation(s)
- Lan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Jing Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Da-Huan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Yan-Qiong Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Shou-Tian Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| |
Collapse
|
4
|
Kapurwan S, Sahu PK, Konar S. Single-Molecule Magnet Behavior of Confined Dy(III) in a Mixed Heteroatom-Substituted Polyoxotungstate. Inorg Chem 2024; 63:4492-4501. [PMID: 38416533 DOI: 10.1021/acs.inorgchem.3c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Two heteroatom-templated Dy(III)-confined polyoxotungstates [H2N(CH3)2]7Na7[Dy2(H2O)7(W4O9)(HPSeW15O54)(α-SeW9O33)2]·31H2O (1) and [H2N(CH3)2]14K2Na18{[Dy2(H2O)13W14O40]2[α-SeW9O33]4[HPSeW15O54]2}·44H2O (2) were synthesized by a one-pot aqueous reaction and structurally characterized. The most distinctive structural feature of complexes 1 & 2 is the simultaneous presence of both trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building blocks containing P(III)-Se(IV) heteroatoms. The trimeric polyanion of 1 can be represented as a fusion of two trivacant Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units encapsulating the [Dy2(H2O)7(W4O9)]12+ cluster. On the other hand, hexameric polyoxoanions of 2 are described as four trivacant Keggin [α-SeW9O33]8- and two Dawson [HPSeW15O54]10-, building units anchoring a [Dy4(H2O)26W28O80]20+ cluster. The magnetic investigation revealed the presence of significant magnetic anisotropy and slow relaxation of magnetization behavior for complex 1 with a phenomenological energy barrier, Ueff = 13.58 K in the absence of an external magnetic field, and Ueff = 24.57 K in the presence of a 500 Oe external dc magnetic field. On the other hand, complex 2 favors the QTM relaxation process in the absence of an external magnetic field and shows field-induced slow relaxation of magnetization with Ueff = 11.11 K at 1500 Oe applied dc field. The in-depth analysis of magnetic relaxation dynamics shows that the relaxation process follows the Orbach as well as Raman relaxation pathways. Further, the ab initio calculation of the studied complexes confirms that the highly axial ground and first excited energy states (containing pure highest mJ states) are responsible for the observed single-molecule magnet (SMM) behavior. Remarkably, this is the first example of a mixed heteroatom-based Dy(III)-substituted polyoxotungstate with both trimeric Keggin [α-SeW9O33]8- and Dawson [HPSeW15O54]10- building units showing SMM behavior.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
5
|
Niu B, Zhang M, Yan L, Yu A, Ma P, Wang J, Niu J. Two Tetra-Nuclear Ln-Substituted Prazine Dicarboxylic Acid-Functionalized Selenotungstates with Catalytic Oxidation of Thioether Properties. Inorg Chem 2023. [PMID: 37996253 DOI: 10.1021/acs.inorgchem.3c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Two two-dimensional Ln-substituted prazine dicarboxylic acid-functionalized selenotungstates Na3H9[(H2N(CH3)2]2{(Se4W27O100)[Ln4(H2O)8(Hpzdc)2(pzdc)]}·26H2O [Ln = Nd (1) and Ce (2)]; H2pzdc = 2,3-pyrazine dicarboxylic acid) have been synthesized by one-pot self-assembly strategy, in which the basic polyanion [Se4W27O100]22-was composed of two [SeW8O31]10- fragments, a [SeW9O33]8- segment and an intriguing {SeO} group, simultaneously tetra-nuclear Ln3+ ions with H2pzdc pendants were embedded. Compounds 1 and 2 showed excellent catalytic oxidation of thioether properties within a short time (20 min) with high 100% conversion and 98.9% selectivity. In addition, the pioneering Ln-substituted selenotungstates were used as catalysts to degrade sulfur mustard simulant 2-chloroethyl ethyl sulfide at room temperature with 99% conversion and 100% selectivity. The chemical kinetic experiment studies revealed that the catalytic reaction was in compliance with the first-order reaction, and the kinetic half-life (t1/2) values were 3.814 and 3.849 min, respectively.
Collapse
Affiliation(s)
- Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luting Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Anqi Yu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
6
|
Chen KK, Chang ZH, Chen YZ, Lu JJ, Liang JJ, Wang XL. Transition metal-decorated molybdotellurate-based architectures constructed from flexible pyrazine-pyridine ligand with tuneable electrochemical sensing performance. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248799. [PMID: 36557932 PMCID: PMC9788577 DOI: 10.3390/molecules27248799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Polyoxometalates (POMs), a large family of anionic polynuclear metal-oxo clusters, have received considerable research attention due to their structural versatility and diverse physicochemical properties. Lacunary POMs are key building blocks for the syntheses of functional POMs due to their highly active multidentate O-donor sites. In this review, we have addressed the structural diversities of Ti/Zr-substituted POMs based on the polymerization number of POM building blocks and the number of Ti and Zr centers. The synthetic strategies and relevant catalytic applications of some representative Ti/Zr-substituted POMs have been discussed in detail. Finally, the outlook on the future development of this area is also prospected.
Collapse
|
8
|
Gong T, Jiang J, Yang S, Liu J, Chen L, Zhao J. Lanthanide-Incorporated Polyoxometalates Assembled from Mixed-Heteroatom-Oriented Three-Layered Cage Clusters. Inorg Chem 2022; 61:18147-18153. [DOI: 10.1021/acs.inorgchem.2c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Sen Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
9
|
Liu X, Li Y, Wang Z, Li Q, Zhao J. A tricarboxylic-ligand decorated neodymium-encapsulated polyoxotungstate with mixed heteroatom fragments. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Li J, Song N, Wang M, Zhang Z, Li Y, Chen L, Zhao J. Two Types of Subgroup-Valence Heteroatoms (P III, Te IV) Synergistically Controlling Octa-Ce III-Encapsulated Heteropolyoxotungstate and Its Electrochemical Recognition Properties. Inorg Chem 2022; 61:17166-17177. [PMID: 36240053 DOI: 10.1021/acs.inorgchem.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid development of the synthetic chemistry of polyoxometalates (POMs) has greatly driven the generation of structurally variable innovative POM-based materials. Herein, we synthesized a novel PIII and TeIV synergistically controlling octa-CeIII-encapsulated heteropolyoxotungstate [H2N(CH3)2]11K2Na6H11[Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12(B-β-TeW8O30)2(B-α-TeW8O31)4]·64H2O (1). Its distinctive anion skeleton [Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12(B-β-TeW8O30)2(B-α-TeW8O31)4]30- is built by two tetra-vacancy [B-β-TeW8O30]8- and four tetra-vacancy [B-α-TeW8O31]10- moieties linked through an inorganic-organic hybrid [Ce8(CH3COO)2(HPIIIO3)2W8O20(H2O)12]26+ {Ce8P2W8} cluster core. Interestingly, {Ce8P2W8} is assembled from four [W2O11]10- groups and two [HPIIIO3]2- anions and eight Ce3+ ions. Besides, 1 was further composited with carboxylated multiwalled carbon nanotube (CMCN), resulting in a bi-component 1/CMCN nanocomposite. An electrochemical recognition platform (named as 1/CMCN/GCE) was built by modifying 1/CMCN on a glassy carbon electrode (GCE) for electrochemical detection of dopamine (DPA) at physiological pH (pH = 7.0). The findings have shown that 1/CMCN/GCE exhibits a good detection limit of 4.95 nM for DPA. This work provides considerable inspiration to promote innovative and rational structure designs of POM-based materials and expand their applications to electrochemical and biological detection fields.
Collapse
Affiliation(s)
- Juan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Nizi Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zhimin Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
11
|
Reduction products-directed different electrochemical sensing performance of polymolybdate-based metal-organic complex. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Jia X, Jiang J, Liu L, Meng L, Chen L, Zhao J. Two Innovative Fumaric Acid Bridging Lanthanide-Encapsulated Hexameric Selenotungstates Containing Mixed Building Units and Electrochemical Performance for Detecting Mycotoxin. Inorg Chem 2022; 61:10965-10976. [PMID: 35793494 DOI: 10.1021/acs.inorgchem.2c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two particular fumaric acid bridging lanthanide-encapsulated selenotungstates [H2N(CH3)2]16Na8[Ln3(H2O)7]2 [W4O8(C4H2O4) (C4H3O4)]2[SeW6O25]2[B-α-SeW9O33]4·46H2O [Ln = Ce3+ (1), La3+ (2)] were acquired by the deliberately designed step-by-step synthetic strategy, which are composed of four trilacunary Keggin [B-α-SeW9O33]8- and two original [SeW6O25]10- building units together with one fumaric acid bridging heterometallic [Ln3(H2O)7]2[W4O8(C4H2O4) (C4H3O4)]228+ entity. Particularly, this heterometallic cluster contains four fumaric acid ligands, which play two different roles: one works as the pendant decorating the cluster and the other acts as the linker connecting the whole structure. In addition, the 1@DDA hybrid material was produced through the cation exchange of 1 and dimethyl distearylammonium chloride (DDA·Cl) and its beehive-shaped film of 1@DDA was prepared by the breath figure method, which can be further used to establish an electrochemical biosensor for detecting a kind of mycotoxin-ochratoxin A (OX-A). The 1@DDA beehive-shaped film-based electrochemical biosensor exhibits good reproducibility and specific sensing toward OX-A with a low detection limit of 29.26 pM. These results highlight the huge feasibility of long-chain flexible ligands in building lanthanide-encapsulated selenotungstates with structural complexity and further demonstrate great electrochemical application potentiality of polyoxometalate-involved materials in bioanalysis, tumor diagnosis, and iatrology.
Collapse
Affiliation(s)
- Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lina Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
13
|
Xie P, Liu Z, Huang S, Chen J, Yan Y, Li N, Zhang M, Jin M, Shui L. A sensitive electrochemical sensor based on wrinkled mesoporous carbon nanomaterials for rapid and reliable assay of 17β-estradiol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Lu JJ, Liang JJ, Lin HY, Liu QQ, Cui ZW, Wang XL. Four Anderson-type [TeMo 6O 24] 6−-based metal–organic complexes with a new bis(pyrimidine)-bis(amide): multifunctional electrochemical and adsorption performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four isostructural Anderson-type POM-based metal–organic complexes derived from a new bis(pyrimidine)-bis(amide) ligand were synthesized, showing multifunctional electrochemical sensing activities and good adsorption performances for organic dyes.
Collapse
Affiliation(s)
- Jun-Jun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ju-Ju Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hong-Yan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Qian-Qian Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Zi-Wei Cui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
15
|
Xie S, Wang D, Wang Z, Liu J, Chen L, Zhao J. Dual-heteroatom-templated lanthanoid-inserted heteropolyoxotungstates simultaneously comprising Dawson and Keggin subunits and their composite film applied for electrochemical immunosensing of auximone. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01246k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two unprecedented PIII–SbIII-heteroatom templated lanthanide-inserted heteropolyoxotungstates were obtained and their composite film was applied for the electrochemical immunosensing of auximone.
Collapse
Affiliation(s)
- Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zixu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Song N, Li Y, Wang Y, Wang M, Liu M, Chen L, Zhao J. Organic–inorganic hybrid phosphite-participating S-shaped penta-CeIII incorporated tellurotungstate as electrochemical enzymatic hydrogen peroxide for β-D-glucose detection. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00816e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate chemistry has made rapid advances in innovative structural chemistry. The lower valence state and lone electron pair effect of subgroup-valence heteroatom Te(IV) can be introduced into the tungsten-oxygen system...
Collapse
|
17
|
Li H, Xu X, Tang Z, Zhao J, Chen L, Yang GY. Three Lanthanide-Functionalized Antimonotungstate Clusters with a {Sb 4O 4Ln 3(H 2O) 8} Core: Syntheses, Structures, and Properties. Inorg Chem 2021; 60:18065-18074. [PMID: 34797058 DOI: 10.1021/acs.inorgchem.1c02679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three lanthanide (Ln)-functionalized antimonotungstate (AT) clusters with a {Sb4O4Ln3(H2O)8} core [H2N(CH3)2]14Na8H16[Sb4O4Ln3(H2O)8W2O4(H2O)2(B-α-SbW9O33)4]2·87H2O [Ln = Dy3+ (1), Ho3+ (2), Y3+ (3)] were synthesized in an acidic aqueous solution. Their molecular structural unit comprises two {Sb4O4Ln3(H2O)8}-core-incorporated tetrameric [Sb4O4Ln3(H2O)8W2O4(H2O)2 (B-α-SbW9O33)4]19- polyanionic units, each of which is assembled from an unprecedented [Sb4O4Ln3(H2O)8W2O4(H2O)2]17+ heteroatom cluster surrounded by four trivacant [B-α-SbW9O33]9- subunits. What is noteworthy is that a tetrahedral {Sb4O4} cluster is located at the center of the polyanionic unit, as far as we know, which is very infrequent in multi-Ln-functionalized polyoxometalate chemistry. Solid-state luminescent properties and energy migration of AT ligands to Dy3+ and Ho3+ cations in 1 and 2 have been intensively probed at ambient temperature. By varying the exciting wavelength from 250 to 450 nm, the emitting color could vary from blue to yellow for 1 and blue to green-yellow for 2, separately. In addition, high catalytic activities and good reusability of 2 as a heterogeneous catalyst for oxygenation reaction of sulfides have been systematically performed.
Collapse
Affiliation(s)
- Hailou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.,MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|