1
|
Vuong VH, Ippili S, Pammi SVN, Bae J, Yang TY, Jeong MJ, Chang HS, Jeon MG, Choi J, Tran MT, Tran VD, Jella V, Yoon SG. Enhanced Responsivity and Photostability of Cs 3Bi 2I 9-Based Self-Powered Photodetector via Chemical Vapor Deposition Engineering. SMALL METHODS 2024:e2400310. [PMID: 39225357 DOI: 10.1002/smtd.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Lead-based halide perovskites have gained significant prominence in recent years in optoelectronics and photovoltaics, owing to their exceptional optoelectronic properties. Nonetheless, the toxicity of lead (Pb) and the stability concern pose obstacles to their potential for future large-scale market development. Herein, stable lead-free Cs3Bi2I9 (CBI) films are presented with smooth and compact morphologies synthesized via chemical vapor deposition (CVD), demonstrating their application as an UV photodetector in a self-powered way. The self-powered photodetectors (SPDs) exhibit remarkable characteristics, including a responsivity of 1.57 A W-1 and an impressive specific detectivity of 3.38 × 1013 Jones under the illumination of 365 nm at zero bias. Furthermore, the SPDs exhibit a nominal decline (≈2.2%) in the photocurrent under constant illumination over 500 h, highlighting its impressive long-term operational stability. Finally, the real-time UV-detection capability of the device is demonstrated by measuring the photocurrent under various conditions, including room light and sunlight at different times. These findings offer a new platform for synthesizing stable and high-quality perovskite films, and SPDs for advancing the development of wearable and portable electronics.
Collapse
Affiliation(s)
- Van-Hoang Vuong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Swathi Ippili
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - S V N Pammi
- Department of Physics, School of Sciences & Humanities, SR University, Warangal, Telangana, 506371, India
| | - JeongJu Bae
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Tae-Youl Yang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Min Ji Jeong
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyo Sik Chang
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Min-Gi Jeon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Manh Trung Tran
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 10000, Vietnam
| | - Van-Dang Tran
- School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Venkatraju Jella
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
2
|
Feng J, Mak CH, Yu L, Han B, Shen HH, Santoso SP, Yuan M, Li FF, Song H, Colmenares JC, Hsu HY. Structural Modification Strategies, Interfacial Charge-Carrier Dynamics, and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts. SMALL METHODS 2024; 8:e2300429. [PMID: 37381684 DOI: 10.1002/smtd.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.
Collapse
Affiliation(s)
- Jianpei Feng
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chun Hong Mak
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Li Yu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Widya Mandala Surabaya Catholic University, Surabaya, East Java, 60114, Indonesia
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fang-Fang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | | | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
3
|
Ding L, Ding Y, Bai F, Chen G, Zhang S, Yang X, Li H, Wang X. In Situ Growth of Cs 3Bi 2Br 9 Quantum Dots on Bi-MOF Nanosheets via Cosharing Bismuth Atoms for CO 2 Capture and Photocatalytic Reduction. Inorg Chem 2023; 62:2289-2303. [PMID: 36692474 DOI: 10.1021/acs.inorgchem.2c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Given the global warming caused by excess CO2 accumulation in the atmosphere, it is essential to reduce CO2 by capturing and converting it to chemical feedstock using solar energy. Herein, a novel Cs3Bi2Br9/bismuth-based metal-organic framework (Bi-MOF) composite was prepared via an in situ growth strategy of Cs3Bi2Br9 quantum dots (QDs) on the surface of Bi-MOF nanosheets through coshared bismuth atoms. The prepared Cs3Bi2Br9/Bi-MOF exhibits bifunctional merits for both the high capture and effective conversion of CO2, among which the optimized 3Cs3Bi2Br9/Bi-MOF sample shows a CO2-CO conversion yield as high as 572.24 μmol g-1 h-1 under the irradiation of a 300 W Xe lamp. In addition, the composite shows good stability after five recycles in humid air, and the CO2 photoreduction efficiency does not decrease significantly. The mechanistic investigation uncovers that the intimate atomic-level contact between Cs3Bi2Br9 and Bi-MOF via the coshared atoms not only improves the dispersion of Cs3Bi2Br9 QDs over Bi-MOF nanosheets but also accelerates interfacial charge transfer by forming a strong bonding linkage, which endows it with the best performance of CO2 photoreduction. Our new finding of bismuth-based metal-organic framework/lead-free halide perovskite by cosharing atoms opens a new avenue for a novel preparation strategy of the heterojunction with atomic-level contact and potential applications in capture and photocatalytic conversion of CO2.
Collapse
Affiliation(s)
- Lan Ding
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| | - Yongping Ding
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China.,Department of Chemistry, Baotou Teachers' College, Baotou014030, Inner Mongolia, P. R. China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| | - Gonglai Chen
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| | - Shuwei Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| | - Xiaoxue Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| | - Huiqin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| | - Xiaojing Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China.,Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, Inner Mongolia, P. R. China
| |
Collapse
|
4
|
Schmitz F, Neisius R, Horn J, Sann J, Schlettwein D, Gerhard M, Gatti T. Tuning the optical properties of 2D monolayer silver-bismuth bromide double perovskite by halide substitution. NANOTECHNOLOGY 2022; 33:215706. [PMID: 35158342 DOI: 10.1088/1361-6528/ac54df] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Silver-bismuth double perovskites are promising replacement materials for lead-based ones in photovoltaic (PV) devices due to the lower toxicity and enhanced stability to environmental factors. In addition, they might even be more suitable for indoor PV, due to the size of their bandgap better matching white LEDs emission. Unfortunately, their optoelectronic performance does not reach that of the lead-based counterparts, because of the indirect nature of the band gap and the high exciton binding energy. One strategy to improve the electronic properties is the dimensional reduction from the 3D to the 2D perovskite structure, which features a direct band gap, as it has been reported for 2D monolayer derivates of Cs2AgBiBr6obtained by substituting Cs+cations with bulky alkylammonium cations. However, a similar dimensional reduction also brings to a band gap opening, limiting light absorption in the visible. In this work, we report on the achievement of a bathochromic shift in the absorption features of a butylammonium-based silver-bismuth bromide monolayer double perovskite through doping with iodide and study the optical properties and stability of the resulting thin films in environmental conditions. These species might constitute the starting point to design future sustainable materials to implement as active components in indoor photovoltaic devices used to power the IoT.
Collapse
Affiliation(s)
- Fabian Schmitz
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Raphael Neisius
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonas Horn
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Institute of Applied Physics, Justus Liebig University, Heinrich Buff Ring 16, 35392 Giessen, Germany
| | - Joachim Sann
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Derck Schlettwein
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Institute of Applied Physics, Justus Liebig University, Heinrich Buff Ring 16, 35392 Giessen, Germany
| | - Marina Gerhard
- Faculty of Physics and Materials Science Center, Philipps-Universität Marburg, Renthof 7a, Marburg D-35032, Germany
| | - Teresa Gatti
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Centre of Excellence ENSEMBLE 3 sp. z o.o., Wolczynska 133, Warsaw, 01-919, Poland
| |
Collapse
|