1
|
Chen R, Yang RW, Shi HN, Zhang Y, Ma LJ. A highly selective and recyclable fluorescent sensor based on a Salamo-Salen-Salamo type ligand for continuous detection of Al 3+ and phosphates in drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125256. [PMID: 39388935 DOI: 10.1016/j.saa.2024.125256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
In this work, a fluorescence chemical sensor continuous detection Al3+ and phosphates by a Salamo-Salen-Salamo type compound (SL) was employed. The sensor continuously recognized Al3+ and phosphates with good selectivity and fast response time, and a low limit of detection of 0.25 μΜ and 0.96 μM, at the same time accompanied by a naked-eye identification specificity. The detection mechanism of SL towards Al3+ is due to the chelating fluorescence enhancement effect and ICT effect, and continuously towards phosphates is due to the collapse of the SL-Al3+ and coordination interaction between Al3+ and phosphates, by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, other spectral characterization and DFT calculation as evidence. In addition, the sensor had good recyclability and reusability. The distribution of Al3+ and phosphates in zebrafish cells was effectively monitored by confocal microscopy based on the good biocompatibility and tissue permeability of SL. Furthermore, the feasibility of using sensor SL to detect the content of Al3+ and phosphate ions in certain drugs was quantitatively analyzed through experiments. It was found SL had a good result in practical application.
Collapse
Affiliation(s)
- Rui Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Ru-Wa Yang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Hao-Nan Shi
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Long-Jun Ma
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
3
|
Du MX, Li XX, Ma CY, Dong WK, Ding YJ. A unique N-heterocyclic oligo(N,O-donor) salamo-Ni(II)-based probe for highly selective fluorescence detection of Cr 2O 72. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123909. [PMID: 38245967 DOI: 10.1016/j.saa.2024.123909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
A unique fluorescent probe Ni-DAS was developed by a nitrogenous heterocyclic oligo(N,O-donor) salamo-based compound DAS. DAS exhibits AIE and ESIPT effects which are extremely infrequent in salamo-based multi-oxime compounds. In addition, Ni-DAS can be used as a fluorescent probe with high selectivity and sensitivity to recognize Cr2O72- in DMF with 80 % water content, which enhances the value of the probe for application in real environments, and outperforms most similar molecular fluorescence probes. The probe Ni-DAS can recognize Cr2O72- by oxidative hydrolysis of C = N bonds, which promotes further research on theory of C = N bond hydrolysis, and the binding ratio and recognition mechanism were verified and supported by relevant theoretical calculations (DFT & MESP). The experiments showed that the probe Ni-DAS can be used for ion detection in real environments. It provides a new strategy for the oxidative hydrolysis of C = N bond and the structure of salamo-based compounds with AIE nature, and offers new ideas for study ion recognition and acidity detection.
Collapse
Affiliation(s)
- Ming-Xia Du
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xiao-Xia Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Chen-Yin Ma
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yu-Jie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
4
|
La YT, Du MX, Gan LL, Zhang Y, Sun YX, Dong WK. Spectroscopic and theoretical studies on a novel bis(salamo)-like probe for highly effective fluorimetric-colorimetric identification of Fe 3+ and Cu 2+ in aquo-organic medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123481. [PMID: 37804710 DOI: 10.1016/j.saa.2023.123481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
A novel bis(salamo)-type sensor FT for fluorescence-colorimetric recognition of Fe3+/Cu2+ has been created, which revealed significant fluorescent performance and colorimetric sensing ability for Cu2+ and Fe3+ ions, superior to other related competitive metal ions. Interestingly, the binding of the FT probe with Cu2+ ions manifested an instant color change from colorless to red in sunlight, which is detectable by the naked-eye, and a fluorescence turn-off response under UV light for Fe3+ and Cu2+. The results demonstrated that the probe exhibits better sensitivity, greater affinity and lower limit of detection leading to quick response time in an aquo-organic medium. The excited state property of the FT probe and in the presence of Cu2+/Fe3+ was evaluated on the basis of DFT & TD-DFT results. Furthermore, test strips have been provided for convenient monitoring of Cu2+ and Fe3+ ions by naked eye and fluorescence method.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ming-Xia Du
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Chai ZL, Liu GH, Zheng YR, Ding YF, Wang L, Dong WK, Ding YJ. A nonsymmetrical salamo-like fluorescence chemical sensor for selective identification of Cu 2+ and B 4O 72- ions and practical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:123839. [PMID: 38417235 DOI: 10.1016/j.saa.2024.123839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 03/01/2024]
Abstract
An innovative salamo-like fluorescent chemical sensor H2L, has been prepared that can be utilized to selectively detect Cu2+ and B4O72- ions. Cu2+ ions can bind to oxime state nitrogen and phenol state oxygen atoms in the chemosensor H2L, triggering the LMCT effect leading to fluorescence enhancement. The crystal structure of the copper(II) complex, named as [Cu(L)], has been achieved via X-ray crystallography, and the sensing mechanism has been confirmed by further theoretical calculations with DFT. Besides, the sensor H2L recognizes B4O72- ions causing an ICT effect resulting in bright blue fluorescence. Moreover, the sensor has relatively high selectivity and sensitivity for Cu2+ and B4O72- ions, and the detection limits are 1.02 × 10-7 and 2.06 × 10-7 M, respectively. In addition, the good biocompatibility and excellent water solubility of the sensor H2L make it very advantageous in practical applications, using H2L powder for fingerprint visualization, using H2L to identify the phenomenon of B4O72- ions emitting bright blue fluorescence, making it an ink that can print encrypted messages on A4 paper, in addition to this, based on H2L, the real water sample was tested for Cu2+ ion recognition, and finally the test strip experiment was carried out.
Collapse
Affiliation(s)
- Zhi-Lei Chai
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Guo-Hua Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Ying-Ru Zheng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yi-Fan Ding
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Li Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yu-Jie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
6
|
La YT, Yan YJ, Gan LL, Zhang Y, Dong WK, Ding YJ. A fluorescent Salamo-Salen-Salamo-Zn(II) sensor for bioimaging and biosensing H 2PO 4- in Zebrafish and plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123159. [PMID: 37478709 DOI: 10.1016/j.saa.2023.123159] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
A newly designed and synthesized Salamo-Salen-Salamo-Zn(II) complex sensor (sensor ZT) was extensively explored for anion sensing studies. The selectivity and sensitivity of the sensor ZT towards H2PO4- ions were based on ICT and CHEF effects, and via displacement pathways in DMSO/H2O (9:1, v/v) medium in the presence of other anions like, PO43-, HPO42- and P2O74- in a short time, separately. The prepared ZT sensor has excellent association constant and low detection lines. The sensing mechanism and binding mode of the sensor were studied by UV-Vis spectroscopy, HR-MS, 1H NMR titration and theory calculations (DFT & TD-DFT) for analytes. The time response and stability of the sensor are also given. Meanwhile, the sensor ZT can be widely used as a simple and effective solid-state optical sensor to detect H2PO4- by intuitive fluorescence changes. In addition, besides the environment can be used as a powerful instrument for detecting H2PO4-, based on the good biocompatibility and tissue permeability of ZT, effectively monitoring H2PO4- in cellular distribution by confocal microscopy using Zebrafish and bean sprout.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yu-Jie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
7
|
La YT, Yan YJ, Li X, Zhang Y, Sun YX, Dong WK. Coordination-Driven Salamo-Salen-Salamo-Type Multinuclear Transition Metal(II) Complexes: Synthesis, Structure, Luminescence, Transformation of Configuration, and Nuclearity Induced by the Acetylacetone Anion. Inorg Chem 2023. [PMID: 37311103 DOI: 10.1021/acs.inorgchem.3c01149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A flexible polydentate Salamo-Salen-Salamo hybrid ligand H4L was designed and synthesized, which has rich pockets (salamo and salen pockets) so that it may have fascinating coordination patterns with transition metal(II) ions. Four multinuclear transition metal(II) complexes, novel butterfly-shaped homotetranuclear [Ni4(L)(μ1-OAc)2(μ1,3-OAc)2(H2O)0.5(CH3CH2OH)3.5]·4CH3CH2OH (1), helical homotrinuclear [Zn3(L)(μ1-OAc)2]·2CH3CH2OH (2), double-helical homotrinuclear [Cu2(H2L)2]·2CH3CN (3), and mononuclear [Ni(H2L)]·1.5CH3COCH3 (4), have been synthesized and characterized by single-crystal X-ray diffraction. The effects of different anions [OAc- and (O2C5H7)2-] on the complexation behavior of H4L with transition metal(II) ions were studied by UV-vis spectrophotometry. The fluorescent properties of the four complexes were studied with zebrafish, which are expected to be a potential light-emitting material. Ultimately, interaction region indicator (IRI) valuations, Hirshfeld surface analyses, density functional theory (DFT & TD-DFT), electrostatic potential analyses (ESP), and simulations were carried out to further demonstrate the weak interactions and electronic properties of the free ligand and its four complexes.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
8
|
Huang Y, Li WD, Wei YX, Wang L, Dong WK. Structural, theoretical and optical investigations of two lateral twisting trinuclear Co(II) and Ni(II) salamo type complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Paradoxical fluorescein-naphthalene Salamo-Salen-Salamo Zn(II) complex as a H2PO4−-targeted chemosensor and its application in water samples. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Man LL, La YT, Feng LC, Zhang Y, Dong WK. Investigation of syntheses, structures, theoretical calculations, and fluorescence properties of two N 3O-donor half-salamo-type Cu(II) complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2147000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Li-Li Man
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Le-Chuan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Wen-Kui Dong
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Li SZ, Li WD, Yan YB, Zhang Y, Dong WK. Investigations of stable penta- and hexa-coordinate polynuclear Zn(II) and Cd(II) complexes derived from a single-armed salamo-based ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shi-Zhen Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Da Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Yi-Bin Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
12
|
Yan S, Feng G, Geng J, Feng F, Ma H, Huang W. Tunable Construction of Sandwich-Type Double-[1 + 1] and Half-Folded [2 + 2] Schiff-Base Complexes Controlled by the Combination of Primary and Secondary Template Effects. Inorg Chem 2022; 61:20994-21003. [PMID: 36495277 DOI: 10.1021/acs.inorgchem.2c03473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first-row transition-metal ions Mn2+-Cu2+ could serve as effective templates to construct three types of double-[1 + 1], [2 + 2], and [1 + 1] Schiff-base dinuclear macrocyclic complexes in the presence of dialdehydes with different pendant arms and a common 1,8-diamine. The extremely flexible nature of macrocyclic ligands allows for the multiple template-directed syntheses, but the final products could be finely tuned by the subtle variations of Mn2+-Cu2+ ions in a 3d-electronic configuration, radius, and coordination number/geometry as well as the auxiliary (pendant-armed and anionic) template effect at the same time. Two borderlines are observed at the Co2+ ion for forming double-[1 + 1] and [2 + 2] metallacycles involving the H2pdd precursor and the [1 + 1] Cu2+ complex for double-[1 + 1] and [2 + 2] macrocycles containing the H2hpdd unit, respectively. The structural diversity is originated from the non-perfect match between [1 + 1]/[2 + 2] Schiff-base macrocycles and dinuclear metal centers; hence, a compromise between the metal coordination modes and alterations of the ligand conformation takes place.
Collapse
Affiliation(s)
- Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Genfeng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Jiao Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China.,Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| |
Collapse
|
13
|
Peng YD, Yan YJ, La YT, Han XJ, Huang F, Dong WK. Two novel Cu(II) and Ni(II) quinolone-containing half-salamo-like complexes: Theoretical and experimental studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Pu LM, Zhang T, La YT, Long HT, Xu WB, Dong WK. A study on two unusual heterohexanuclear [CuII4LnIII2] (LnIII = LaIII and CeIII) complexes with a N2O2- and O6-donor bis(salamo)-based ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Solvent-driven self-assembly of two novel di- and tetra-nuclear Cu(II) bis(salamo)-based complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Ma LJ, Li X, Yan YJ, Yue YN, Dong WK. An investigation of two heterobimetallic [Cu(II)2Ln(III)] (Ln = La and Ce) complexes of a more flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang J, Feng LC, Li SZ, Dong WK. Studies on two phenoxo-bridged homopolynuclear Cu(II) bis(salamo) type complexes based on theoretical calculations and fluorescence properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Man LL, Li SZ, Zhang J, Zhang Y, Dong WK. A new single-armed salamo-based sensor with aggregation-induced emission characteristic for selective sensing of aluminium ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Huang Y, Li X, Li WD, Dong WK. Experimental and theoretical investigation of a new non-symmetric salamo-like ligand and its tri-nuclear Zn(II) and Ni(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Dong WK, Zhang JQ, Du MX. A highly selective and sensitive salamo-salen-salamo hybrid fluorometic chemosensor for identification of Zn 2+ and the continuous recognition of phosphate anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121340. [PMID: 35561444 DOI: 10.1016/j.saa.2022.121340] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A salamo-salen-salamo hybrid fluorescent chemical sensor (H4L) was synthesized and characterized. It exhibits high selectivity and sensitivity to Zn2+ in physiological pH range. Meanwhile, its zinc(II) complex (L-Zn2+) continuously responses phosphate anions in DMF/H2O (v/v, 9:1) solution. Moreover, the identification processes are explored using characterization methods such as UV-absorption spectra, IR spectra and ESI-MS spectrum. In addition, the coordination mechanism of H2PO4- and Zn2+ were successfully exploited to make the chemical sensor reproducible. In short, the sensors H4L and L-Zn2+ will be promising detection devices for Zn2+ and phosphate anions.
Collapse
Affiliation(s)
- Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Jin-Qiang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Ming-Xia Du
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
21
|
|
22
|
Li SZ, Wei YX, Huang Y, Dong WK. Counteranion-driven self-assembly of di- and tetra-nuclear Zn(II) single‐armed salamo‐type complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Man LL, Dou L, Li WD, La YT, Dong WK. A dual-signal half-salamo-based sensing platform for simultaneous colorimetric and fluoremetric detection of Fe3+ and reversible recognition of OH− ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Dou L, Hu ZF, Feng LC, Dong WK. Differential study on the transition from a new polyhalogen-substituted unsymmetric salamo-based ligand to its Cu(II) and Co(II) complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Zhi-Fei Hu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Le-Chuan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
25
|
Li X, Feng SS, Wei YX, Dong WK. An investigation of a relatively rigid acyclic salamo-type ligand and its square planar Cu(II) complex. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Shan-Shan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yu-Xin Wei
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| |
Collapse
|
26
|
Synthesis, crystal structure, fluorescence properties and theoretical calculations of heterobimetallic 3d–4f complex with a flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Feng LC, Dou L, Li XX, Dong WK. Investigation of two novel di- and tetra-nuclear Cu(II) bis(salamo)-type complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Li SZ, Tong L, Li X, Dong WK. New insight into two penta-coordinated multinuclear copper(II) single-armed salamo-based complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Sun YX, Li J, Li JG, Deng ZP, Sun Y, Xu L. Synthesis, crystal structure and coordination behaviors of two unexpected tetranuclear Zn(II) and Co(II) supramolecular boxes derived from structural variation of coumarin schiff base ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yu Sun
- Experimental Teaching Department of Northwest, Minzu University, Lanzhou, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
30
|
Dou L, Tong L, Yan YB, Deng YH, Dong WK. EXPERIMENTAL AND THEORETICAL STUDY OF A SANDWICH-LIKE PHENOXO-BRIDGED HETEROBIMETALLIC ZINC(II)–MANGANESE(III) 3-MeOSALPHEN COMPLEX. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Nanomagnetic Salamo-based-Pd(0) Complex: an efficient heterogeneous catalyst for Suzuki–Miyaura and Heck cross-coupling reactions in aqueous medium. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Xie KF, Huang Y, Li SZ, Li LL, Dong WK. AN INVESTIGATION INTO THE IMPACT OF INTRODUCED THIOCYANATE ANIONS ON THE TRINUCLEAR Co(II) SALAMO-BASED COMPLEX. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Li M, Feng LC, Feng SS, Dong WK. A nonsymmetric salamo-based turn-off fluorescent probe for the detection of Cu2+ and its structurally rare dinuclear Cu(II) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Feng SS, Wei YX, Li M, Dong WK. A highly selective naphthalene-fluorophore salamo-based chemosensor for sequential identification of Cu2+ and S2− ions in water applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Na LP, Li M, La YT, Dong WK. A novel fluorometric and colorimetric dual-channel single-armed salamo-like chemosensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zhang JQ, Yao GX, Yan YJ, Xu L, Zhang Y, Dong WK. Structurally characterized salamo-based mononuclear Cu(II) complex fluorogenic sensor with high selectivity for CN− and Cys-Cys. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Man LL, Tong L, Gan LL, Li RY, Mu HR, Dong WK. A N 2O 2-tetradentate dioxime fluorescence probe for highly efficient sensing of S 2– and solution discoloration detection of H 2S gas. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2088758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li-Li Man
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Li Tong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Hao-Ran Mu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Wen-Kui Dong
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Pu LM, Li RY, Chen ZZ, Xu WB, Long HT, Dong WK. An aldehyde-appended salamo-type turn-on optical probe: Rapid detection of trace cyanide ions by structural conversion program. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Yue YN, La YT, Han XJ, Dong WK. Coordination-driven self-assemblies of two hetero‐trinuclear [Cu(II) 2Ln(III)] (Ln = La and Ce) complexes with a flexible bis(salamo)‐type ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2050713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yong-Ning Yue
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Xiu-Juan Han
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
40
|
Guo WT, Dou L, Yan YJ, Li RY, Dong WK. A naphthol-functionalized bis(salamo)-like chromogenic and fluorogenic probe for monitoring hydrogen sulfide and application in water samples. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wen-Ting Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| |
Collapse
|