1
|
Pu Z, Fu X, Qin J, Yang H, Shuai M, Li F. Spectroscopic and Theoretical Insights into H 2 Activation on Uranium Monoxide: Homolytic H 2 Cleavage Mediated by Intermediate OU(η 2-H 2). Inorg Chem 2024; 63:13304-13310. [PMID: 38986152 DOI: 10.1021/acs.inorgchem.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Elucidating molecular-level interactions between dihydrogen (H2) and uranium oxides reveals fundamental insights into the intrinsic H2 activation mechanisms underlying processes such as heterogeneous catalysis over uranium oxides and corrosion of uranium induced by H2. Herein, the reactions of H2 with uranium monoxide (UO) molecules have been investigated via a combination of matrix-isolation infrared spectroscopy and quantum chemical calculations. A side-on bonded H2 complex, OU(η2-H2), is identified at 3733.7 and 800.3 cm-1. This species is regarded as a crucial intermediate along H2 activation pathways. Bonding analysis reveals cooperative U(π5f/6d) → H2(σ*) π// backdonation and U ← H2(σ) σ donation in OU(η2-H2) that facilitate the activation of the H2 moiety. Upon λ > 550 nm photoirradiation, OU(η2-H2) isomerizes into H2UO, indicating the homolytic H2 cleavage on UO. Mechanistic details of H2 adsorption and dissociation on UO molecules have been further elucidated.
Collapse
Affiliation(s)
- Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Xiaoguo Fu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Hu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, PR China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Fang Li
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, PR China
| |
Collapse
|
2
|
Zhang J, Li L, Xie X, Song XQ, Schaefer HF. Biomimetic Frustrated Lewis Pair Catalysts for Hydrogenation of CO to Methanol at Low Temperatures. ACS ORGANIC & INORGANIC AU 2024; 4:258-267. [PMID: 38585511 PMCID: PMC10996047 DOI: 10.1021/acsorginorgau.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024]
Abstract
The industrial production of methanol through CO hydrogenation using the Cu/ZnO/Al2O3 catalyst requires harsh conditions, and the development of new catalysts with low operating temperatures is highly desirable. In this study, organic biomimetic FLP catalysts with good tolerance to CO poison are theoretically designed. The base-free catalytic reaction contains the 1,1-addition of CO into a formic acid intermediate and the hydrogenation of the formic acid intermediate into methanol. Low-energy spans (25.6, 22.1, and 20.6 kcal/mol) are achieved, indicating that CO can be hydrogenated into methanol at low temperatures. The new extended aromatization-dearomatization effect involving multiple rings is proposed to effectively facilitate the rate-determining CO 1,1-addition step, and a new CO activation model is proposed for organic catalysts.
Collapse
Affiliation(s)
- Jiejing Zhang
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xiaofeng Xie
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xue-Qing Song
- College
of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei
Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis
of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Henry F. Schaefer
- Center
for Computational Quantum Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Li F, Qin J, Qiu R, Shuai M, Pu Z. Matrix-Isolation Infrared Spectra and Electronic Structure Calculations for Dinitrogen Complexes with Uranium Trioxide Molecules UO 3(η 1-NN) 1-4. Inorg Chem 2022; 61:11075-11083. [PMID: 35833920 DOI: 10.1021/acs.inorgchem.2c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations of the interactions of uranium trioxide (UO3) with other species are expected to provide a new perspective on its reaction and bonding behaviors. Herein, we present a combined matrix-isolation infrared spectroscopy and theoretical study of the geometries, vibrational frequencies, electronic structures, and bonding patterns for a series of dinitrogen (N2) complexes with UO3 moieties UO3(η1-NN)1-4. The complexes are prepared by reactions of laser-ablated uranium atoms with O2/N2 mixtures or laser-ablated UO3 molecules with N2 in solid argon. UO3(η1-NN)1-4 are classified as "nonclassical" metal-N2 complexes with increased Δν(N2) values according to the experimental observations and the computed blue-shifts of N-N stretching frequencies and N-N bond length contractions. Electronic structure analysis suggests that UO3(η1-NN)1-4 are σ-only complexes with a total lack of π-back-donation. The energy decomposition analysis combined with natural orbitals for chemical valence calculations reveal that the bonding between the UO3 moiety and N2 ligands in UO3(η1-NN)1-4 arises from the roughly equal electrostatic attractions and orbital mixings. The inspection of orbital interactions from pairwise contributions indicates that the strongest orbital stabilization comes from the σ-donations of the 4σ*- and 5σ-based ligand molecular orbitals (MOs) into the hybrid 7s/6dx2-y2 MO of the U center. The electron polarization induced by electrostatic effects in the Ninner ← Nouter direction provides complementary contributions to the orbital stabilization in UO3(η1-NN)1-4. In addition, the reactions of UO3 with N2 ligands and the origination of the nonclassical behavior in UO3(η1-NN)1-4 are discussed.
Collapse
Affiliation(s)
- Fang Li
- School of Material Science and Engineering, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, P. R. China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China.,Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China.,Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| | - Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| |
Collapse
|